scispace - formally typeset
Search or ask a question

Showing papers by "Eileen Gentleman published in 2011"


Journal ArticleDOI
TL;DR: A bone tissue engineering approach in which arginine-glycine-aspartic acid (RGD)-modified alginate hydrogels are crosslinked with bioactive strontium and zinc ions as well as calcium to stimulate bone formation.
Abstract: The development of bone replacement materials is an important healthcare objective due to the drawbacks of treating defects with bone autografts. In this work we propose a bone tissue engineering approach in which arginine-glycine-aspartic acid (RGD)-modified alginate hydrogels are crosslinked with bioactive strontium and zinc ions as well as calcium. Strontium was chosen for its ability to stimulate bone formation, and zinc is essential for alkaline phosphatase (ALP) activity. Calcium and strontium gels had similar stiffnesses but different stabilities over time. Strontium gels made with alginate with a high percentage of guluronic acid residues (high G) were slow to degrade, whereas those made with alginate rich in mannuronic acid (high M) degraded more quickly, and supported proliferation of Saos-2 osteoblast-like cells. After an initial burst, strontium release from alginate gels was steady and sustained, and the magnitude of release from high M gels was biologically relevant. Saos-2 cultured within alginate gels upregulated the osteoblast phenotypic marker genes RUNX2, collagen I (COL1A1) and bone sialoprotein (BSP), and ALP protein activity was highest in alginate gels cast with strontium ions. This strategy has the potential to be combined with other alginate-based systems for bone tissue engineering, or adapted to other tissue engineering applications.

79 citations


Journal ArticleDOI
TL;DR: It is demonstrated that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo, and zinc concentrations of 400 µM Zn(2+) or more resulted in cell death.
Abstract: Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 µM Zn(2+) or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

78 citations


Journal ArticleDOI
TL;DR: Lotfibakhshaiesh et al. as discussed by the authors developed a mixture of bioactive glass (BG) and Strontium Substitution (Sr) for bone regeneration.

5 citations