scispace - formally typeset
E

Eran Tromer

Researcher at Tel Aviv University

Publications -  102
Citations -  13455

Eran Tromer is an academic researcher from Tel Aviv University. The author has contributed to research in topics: Encryption & Cryptography. The author has an hindex of 43, co-authored 93 publications receiving 11492 citations. Previous affiliations of Eran Tromer include Massachusetts Institute of Technology & IBM.

Papers
More filters
Proceedings ArticleDOI

Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds

TL;DR: It is shown that it is possible to map the internal cloud infrastructure, identify where a particular target VM is likely to reside, and then instantiate new VMs until one is placed co-resident with the target, and how such placement can then be used to mount cross-VM side-channel attacks to extract information from a target VM on the same machine.
Proceedings ArticleDOI

Zerocash: Decentralized Anonymous Payments from Bitcoin

TL;DR: This paper formulate and construct decentralized anonymous payment schemes (DAP schemes) and builds Zero cash, a practical instantiation of the DAP scheme construction that is orders of magnitude more efficient than the less-anonymous Zero coin and competitive with plain Bit coin.
Posted Content

Cache attacks and Countermeasures: the Case of AES.

TL;DR: In this article, the authors describe side-channel attacks based on inter-process leakage through the state of the CPU's memory cache, which can be used for cryptanalysis of cryptographic primitives that employ data-dependent table lookups.
Book ChapterDOI

Cache attacks and countermeasures: the case of AES

TL;DR: In this article, the authors describe side-channel attacks based on inter-process leakage through the state of the CPU's memory cache, which can be used for cryptanalysis of cryptographic primitives that employ data-dependent table lookups.
Proceedings ArticleDOI

On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption

TL;DR: In this article, the authors proposed a new notion of secure multiparty computation aided by a computationally-powerful but untrusted "cloud" server, where each user is involved only when initially uploading his (encrypted) data to the cloud, and in a final output decryption phase when outputs are revealed.