scispace - formally typeset
Search or ask a question

Showing papers by "Erhard Bremer published in 1991"


Journal ArticleDOI
TL;DR: The tsx-p2 promoter is one of at least seven Escherichia coli promoters that are activated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and negatively regulated by the CytR repressor, and the formation of an active repression complex requires the combined interactions of cAMP-CRP and CyTR at tsx -p2.
Abstract: The tsx-p2 promoter is one of at least seven Escherichia coli promoters that are activated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and negatively regulated by the CytR repressor. DNase I footprinting assays were used to study the interactions of these regulatory proteins with the tsx-p2 promoter region and to characterize tsx-p2 regulatory mutants exhibiting an altered response to CytR. We show that the cAMP-CRP activator complex recognizes two sites in tsx-p2 that are separated by 33 bp: a high-affinity site (CRP-1) overlaps the -35 region, and a low-affinity site (CRP-2) is centered around position -74 bp. The CytR repressor protects a DNA segment that is located between the two CRP sites and partially overlaps the CRP-1 target. In combination, the cAMP-CRP and CytR proteins bind cooperatively to tsx-p2, and the nucleoprotein complex formed covers a region of 78 bp extending from the CRP-2 site close to the -10 region. The inducer for the CytR repressor, cytidine, does not prevent in vitro DNA binding of CytR, but releases the repressor from the nucleoprotein complex and leaves the cAMP-CRP activator bound to its two DNA targets. Thus, cytidine interferes with the cooperative DNA binding of cAMP-CRP and CytR to tsx-p2. We characterized four tsx-p2 mutants exhibiting a reduced response to CytR; three carried mutations in the CRP-2 site, and one carried a mutation in the region between CRP-1 and the -10 sequence. Formation of the cAMP-CRP-CytR DNA nucleoprotein complex in vitro was perturbed in each mutant. These data indicate that the CytR repressor relies on the presence of the cAMP-CRP activator complex to regulate tsx-p2 promoter activity and that the formation of an active repression complex requires the combined interactions of cAMP-CRP and CytR at tsx-p2. Images

50 citations


Journal ArticleDOI
TL;DR: Osmotic regulation was retained in deletion constructs carrying just 19 bp of chromosomal DNA 5' of the promoter, showing that no sequences further upstream are required for the proper osmoregulation of proU transcription.
Abstract: Expression of the Escherichia coli proU operon, which encodes an efficient uptake system for the osmoprotectant glycine betaine, is strongly increased in cells grown at high osmolarity. We isolated 182 independent spontaneous mutants with elevated expression of the chromosomal phi(proV-lacZ) (Hyb2) fusion at low osmolarity. Genetic analysis demonstrated that eight of these mutant strains carried mutations closely linked to the fusion, whereas all others carried mutations that appeared to be in osmZ. All of the mutations resulted in increased but still osmoregulated expression of the phi(proV-lacZ)(Hyb2) fusion. The proU-linked mutants carried an identical point mutation (proU603) which changes the -35 sequence of the proU promoter from TTGCCT to TTGACT and thereby increases the homology of the -35 region to the consensus sequence (TTGACA) of E. coli promoters. We also selected for mutants with decreased expression of the plasmid pOS7-encoded phi(proV-lacZ)(Hyb2) fusion and isolated a plasmid with an IS1 insertion (proU607) between the proU -10 and -35 regions. This insertion creates a hybrid promoter and drastically reduces expression of the fusion but does not abolish its osmotic regulation. Deletion analysis of chromosomal sequences 59 to the proU promoter revealed that sequences located approximately 200 bp upstream of the -35 region were required for high-level expression. Removal of these sequences resulted in a 10-fold decline of phi(proV-lacZ)(Hyb2) expression. Osmotic regulation was retained in deletion constructs carrying just 19 bp of chromosomal DNA 59 of the promoter, showing that no sequences further upstream are required for the proper osmoregulation of proU transcription. Experiments with himA and fis mutant strains indicated that the IHF and FIS proteins are not required for the normal osmoregulation of proU expression. Images

45 citations