scispace - formally typeset
Search or ask a question

Showing papers by "Fang Chen published in 2022"


Journal ArticleDOI
TL;DR: In this article , a major monomer unit of the lignin polymer can function as a signal molecule to trigger proteolysis of the enzyme L-phenylalanine ammonia-lyase.
Abstract: Lignin is a complex phenolic polymer that imparts cell wall strength, facilitates water transport and functions as a physical barrier to pathogens in all vascular plants. Lignin biosynthesis is a carbon-consuming, non-reversible process, which requires tight regulation. Here, we report that a major monomer unit of the lignin polymer can function as a signal molecule to trigger proteolysis of the enzyme L-phenylalanine ammonia-lyase, the entry point into the lignin biosynthetic pathway, and feedback regulate the expression levels of lignin biosynthetic genes. These findings highlight the highly complex regulation of lignin biosynthesis and shed light on the biological importance of monolignols as signaling molecules.

6 citations



Journal ArticleDOI
TL;DR: In this paper , a sensitive method for glucose-containing disaccharide analysis by 1-(4-carboxyphenyl)-3-methyl-5-pyrazolone (CPMP) derivatization using mass spectrometry was developed.
Abstract: Here, we develop a sensitive method for glucose-containing disaccharide analysis by 1-(4-carboxyphenyl)-3-methyl-5-pyrazolone (CPMP) derivatization using mass spectrometry. The intense anion of [M - H]- (m/z 759) was observed for CPMP-labeled disaccharides in a negative mode. After derivatization, its sensitivity was significantly increased with the limits of detection (LODs) and limits of quantification (LOQ) ranging from 3.90 to 8.67 ng L-1 and 12.99 to 28.92 ng L-1, respectively. During CID-MS/MS analysis, the fragment patterns of CPMP derivatized disaccharides in the negative mode were simpler and clearer than their counterparts in a positive mode, which further could be applied to distinct and relatively quantitative isomeric disaccharides with ultrahigh sensitivity and good reproducibility. The great linear relationships could be achieved under wider concentration ratios from 0.01 to 20 compared to the previous report. Eventually, the developed methodology was applicable to identify isomeric disaccharides in beers. No sucrose was discovered. All beers contain 1,4- and 1,6-linked disaccharides. Some of them also have a mixture of 1,2- and 1,3-linked disaccharides. Through the integration of statistical analysis, beers with different production processes were finally discriminated, and the relative quantification of isomaltose and maltose was realized. In general, this method is sensitive, fast, and reliable for the discrimination and relative quantification of isomeric disaccharides in complex matrices. This study provides a new idea for the structural analysis of oligosaccharides in food, plants, and animals and an important theoretical basis for the exploration of new functions of oligosaccharides.

4 citations


Journal ArticleDOI
TL;DR: Integrative analysis and functional experiment strongly support that ACE2 SNP rs2106809 is a functional brain eQTL and its potential involvement in long COVID, which warrants further investigation.
Abstract: Since the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, SARS-CoV-2 has led to a global coronavirus disease 2019 (COVID-19) pandemic. A better understanding of the SARS-CoV-2 receptor ACE2 at the genetic level would help combat COVID-19, particularly for long COVID. We performed a genetic analysis of ACE2 and searched for its common potential single nucleotide polymorphisms (SNPs) with minor allele frequency >0.05 in both European and Chinese populations that would contribute to ACE2 gene expression variation. We thought that the variation of the ACE2 expression would be an important biological feature that would strongly affect COVID-19 symptoms, such as “brain fog”, which is highlighted by the fact that ACE2 acts as a major cellular receptor for SARS-CoV-2 attachment and is highly expressed in brain tissues. Based on the human GTEx gene expression database, we found rs2106809 exhibited a significant correlation with the ACE2 expression among multiple brain and artery tissues. This expression correlation was replicated in an independent European brain eQTL database, Braineac. rs2106809*G also displays significantly higher frequency in Asian populations than in Europeans and displays a protective effect (p = 0.047) against COVID-19 hospitalization when comparing hospitalized COVID-19 cases with non-hospitalized COVID-19 or SARS-CoV-2 test-negative samples with European ancestry from the UK Biobank. Furthermore, we experimentally demonstrated that rs2106809*G could upregulate the transcriptional activity of ACE2. Therefore, integrative analysis and functional experiment strongly support that ACE2 SNP rs2106809 is a functional brain eQTL and its potential involvement in long COVID, which warrants further investigation.

3 citations