scispace - formally typeset
Search or ask a question

Showing papers by "Francesco Quaglia published in 2021"


Journal ArticleDOI
TL;DR: This article investigates the design of an autotuning power‐capping technique with minimal intrusiveness and high portability, which is agnostic about the workload profile of the application, and evaluates the effectiveness of the proposed technique considering two different selection strategies.
Abstract: Multithreaded applications facilitate the exploitation of the computing power of multicore architectures. On the other hand, these applications can become extremely energy‐intensive, in contrast with the need for limiting the energy usage of computing systems. In this article, we explore the design of techniques enabling multithreaded applications to maximize their performance under a power cap. We consider two control parameters: the number of cores used by the application, and the core power state. We target the design of an autotuning power‐capping technique with minimal intrusiveness and high portability, which is agnostic about the workload profile of the application. We investigate two different approaches for building the strategy for selecting the best configuration of the parameters under control, namely a heuristic approach and a model‐based approach. Through an extensive experimental study, we evaluate the effectiveness of the proposed technique considering two different selection strategies, and we compare them with existing solutions.

4 citations


Proceedings ArticleDOI
TL;DR: Metronome as discussed by the authors replaces DPDK's continuous polling with an intermittent sleep&wake mode, and revolves around a new multi-threaded operation, which improves service continuity and reduces the average latency.
Abstract: The increasing performance requirements of modern applications place a significant burden on software-based packet processing. Most of today's software input/output accelerations achieve high performance at the expense of reserving CPU resources dedicated to continuously poll the Network Interface Card. This is specifically the case with DPDK (Data Plane Development Kit), probably the most widely used framework for software-based packet processing today. The approach presented in this paper, descriptively called Metronome, has the dual goals of providing CPU utilization proportional to the load, and allowing flexible sharing of CPU resources between I/O tasks and applications. Metronome replaces DPDK's continuous polling with an intermittent sleep&wake mode, and revolves around a new multi-threaded operation, which improves service continuity. Since the proposed operation trades CPU usage with buffering delay, we propose an analytical model devised to dynamically adapt the sleep&wake parameters to the actual traffic load, meanwhile providing a target average latency. Our experimental results show a significant reduction of the CPU cycles, improvements in power usage, and robustness to CPU sharing even when challenged with CPU-intensive applications.

2 citations