Author
Francisco G. Montoya
Other affiliations: University of Granada
Bio: Francisco G. Montoya is an academic researcher from University of Almería. The author has contributed to research in topics: Renewable energy & AC power. The author has an hindex of 26, co-authored 97 publications receiving 3188 citations. Previous affiliations of Francisco G. Montoya include University of Granada.
Papers published on a yearly basis
Papers
More filters
TL;DR: A review of the current state of the art in computational optimization methods applied to renewable and sustainable energy can be found in this article, which offers a clear vision of the latest research advances in this field.
Abstract: Energy is a vital input for social and economic development. As a result of the generalization of agricultural, industrial and domestic activities the demand for energy has increased remarkably, especially in emergent countries. This has meant rapid grower in the level of greenhouse gas emissions and the increase in fuel prices, which are the main driving forces behind efforts to utilize renewable energy sources more effectively, i.e. energy which comes from natural resources and is also naturally replenished. Despite the obvious advantages of renewable energy, it presents important drawbacks, such as the discontinuity of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization methods. Fortunately, the continuous advances in computer hardware and software are allowing researchers to deal with these optimization problems using computational resources, as can be seen in the large number of optimization methods that have been applied to the renewable and sustainable energy field. This paper presents a review of the current state of the art in computational optimization methods applied to renewable and sustainable energy, offering a clear vision of the latest research advances in this field.
1,394 citations
TL;DR: In this article, the authors reviewed the scientific production of renewable energies, namely, solar, wind, biomass, hydropower and geothermal, from 1979 to 2009, and analyzed the production of all the countries in the world, paying particular attention to renewable energies and research institutions.
Abstract: This paper reviews the scientific production of renewable energies, namely, solar, wind, biomass, hydropower and geothermal, from 1979 to 2009. The production of all the countries in the world is analysed, paying particular attention to renewable energies and research institutions. The production of scientific research for each type of energy is represented on world maps to show the degree of relationship between this research and the resources of these energies. It is observed that biomass is the most studied, both by number of publications, with 56% of the publications on renewable energy, and by geographical distribution. The next in importance by number of publications is solar energy (26%). The countries investigating solar energy, however, are not necessarily those with the greatest availability of this resource. Wind is the third positioned in publication (11%). Wind is being investigated by countries that most have implemented this type of energy production. Hydro and geothermal energies are also investigated by countries with great abundance of this resource. It is observed that research on renewable energy is highly concentrated in a few countries (12 or 14, depending on the energy type), accounting for between 70 and 80% of scientific production. The role of the USA as a leader in research in all renewable energies studies is emphasised. NASA is the leading institution for solar and wind energy, the Chinese Academy of Sciences leads in hydropower and biomass, and the U.S. Geological Survey leads in geothermal energy.
302 citations
TL;DR: Certain bioclimatic architecture strategies that have been adopted in specific countries could be exported to other areas with similar climates because they were proven to be good functional design strategies that resulted in large energy saving measures related to solar protection, humidification or temperature increases.
Abstract: The residential sector consumes a significant amount of energy worldwide. Therefore, it is important to study, analyse and implement bioclimatic architectural systems that contribute to the reduction of energy consumption while considering the possible construction solutions offered at both passive and active levels. The present study conducted a comprehensive analysis that was stratified into three large blocks. The first block examined the concept of bioclimatic architecture. The second examined the bioclimatic architecture construction strategies as a function of each climate zone with the objective of achieving the greatest climate comfort level within a specific building. Fourteen climate zones were established and recommended according to the possible strategies that would facilitate reductions in energy consumption. The third block analysed the principal scientific research trends in this field and highlighted the use of vernacular architecture strategies, experimentation with bioclimatic architecture construction, application of innovative bioclimatic architecture strategies, promotion of bioclimatic architecture, use of bioclimatic architecture in urban planning, inclusion of bioclimatic lessons in study plans and development of energy saving technologies to support bioclimatic architecture. The extensive review described in this paper allowed us to conclude that certain bioclimatic architecture strategies that have been adopted in specific countries could be exported to other areas with similar climates because they were proven to be good functional design strategies that resulted in large energy saving measures (each in its corresponding climate) related to solar protection, humidification or temperature increases.
191 citations
TL;DR: In this article, the authors analyze the charging of electric vehicles in Spain and assess the current situation to be able to propose potential improvements or implementation strategies, and determine that it is necessary to develop public policies for a structured implementation of charging stations in public places and in common-use areas within large shared spaces, such as parking areas and residential areas.
Abstract: The transportation sector is characterized by a high consumption of fossil fuels and a strong environmental impact. Promoting electric vehicles is an alternative to reduce and limit them move towards the sustainability of the automobile sector. In a short period of time, world car manufacturers have built, marketed and sold a million electric vehicles, and a million drivers got used to these new low carbon advanced technologies. Comparatively, this figure represents approximately the average annual sales of conventional vehicles in Spain. The main problem is the battery autonomy, since its maximum range does not exceed 250 km, a restriction that limits the trip. Spain belongs to the group of countries which have longest trip average around 80 km. Then the problem is how to understand electric mobility, for that the types and modes of charging, the types of electric vehicles, and the available charging systems all interact with one another in the charging systems for electric vehicles, which will be specifically analysed. Alternative charging methods are also presented, and the agents involved in the charging process in accordance with applicable regulations are identified. The objective of this article is to analyse the charging of electric vehicles in Spain and to assess the current situation to be able to propose potential improvements or implementation strategies. This paper determines that it is necessary to develop public policies for a structured implementation of charging stations in public places and in common-use areas within large shared spaces, such as parking areas and residential areas in order to improve electric mobility in Spain. This paper also illustrates the need to legislate standards for charging electric vehicles to maximize their implementation in Spain, with the goal of implementing electric vehicles on a larger scale and ultimately allowing society to benefit from the advantages of this technology.
124 citations
TL;DR: In this article, the authors studied and analyzed the evolution and milestones of indoor lighting from incandescent bulbs to the modern light-emitting diodes (LEDs) and organic lighting emitting dioders (OLED).
Abstract: In order to achieve greater energy sustainability, the European Union has begun the reform process of the energy policy. Two main lines have been raised: electricity generation with renewable energy and energy saving. The raising cost of energy makes indoor lighting techniques as one of the most important contributors for energy saving in most of the industrialized countries. Therefore, the history of indoor lighting is not exclusively linked to the development of new light sources, having impact on energy saving and sustainability. The aim of this paper was to study and analyse the evolution and milestones of indoor lighting from incandescent bulbs to the modern light-emitting diodes (LEDs) and organic lighting emitting diodes (OLED) going through intermediate milestones like fluorescent lamps (FL) and/or techniques in lighting induction lamps. As main conclusion of this review, it has been found that indoor lighting techniques with their energy efficiency have opened new perspectives for optimizing the energy conversion and this in turn will play a major role in people's quality of life and well-being.
113 citations
Cited by
More filters
TL;DR: In this paper, the authors reviewed the opportunities associated with renewable energy sources which include: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts.
Abstract: The world is fast becoming a global village due to the increasing daily requirement of energy by all population across the world while the earth in its form cannot change. The need for energy and its related services to satisfy human social and economic development, welfare and health is increasing. Returning to renewables to help mitigate climate change is an excellent approach which needs to be sustainable in order to meet energy demand of future generations. The study reviewed the opportunities associated with renewable energy sources which includes: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts. Despite these opportunities, there are challenges that hinder the sustainability of renewable energy sources towards climate change mitigation. These challenges include Market failures, lack of information, access to raw materials for future renewable resource deployment, and our daily carbon footprint. The ...
1,545 citations
TL;DR: A review of the current state of the art in computational optimization methods applied to renewable and sustainable energy can be found in this article, which offers a clear vision of the latest research advances in this field.
Abstract: Energy is a vital input for social and economic development. As a result of the generalization of agricultural, industrial and domestic activities the demand for energy has increased remarkably, especially in emergent countries. This has meant rapid grower in the level of greenhouse gas emissions and the increase in fuel prices, which are the main driving forces behind efforts to utilize renewable energy sources more effectively, i.e. energy which comes from natural resources and is also naturally replenished. Despite the obvious advantages of renewable energy, it presents important drawbacks, such as the discontinuity of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization methods. Fortunately, the continuous advances in computer hardware and software are allowing researchers to deal with these optimization problems using computational resources, as can be seen in the large number of optimization methods that have been applied to the renewable and sustainable energy field. This paper presents a review of the current state of the art in computational optimization methods applied to renewable and sustainable energy, offering a clear vision of the latest research advances in this field.
1,394 citations
TL;DR: The review indicates that future researches should be oriented towards improving the efficiency of search techniques and approximation methods for large-scale building optimization problems; and reducing time and effort for such activities.
Abstract: Recent progress in computer science and stringent requirements of the design of “greener” buildings put forwards the research and applications of simulation-based optimization methods in the building sector. This paper provides an overview on this subject, aiming at clarifying recent advances and outlining potential challenges and obstacles in building design optimization. Key discussions are focused on handling discontinuous multi-modal building optimization problems, the performance and selection of optimization algorithms, multi-objective optimization, the application of surrogate models, optimization under uncertainty and the propagation of optimization techniques into real-world design challenges. This paper also gives bibliographic information on the issues of simulation programs, optimization tools, efficiency of optimization methods, and trends in optimization studies. The review indicates that future researches should be oriented towards improving the efficiency of search techniques and approximation methods (surrogate models) for large-scale building optimization problems; and reducing time and effort for such activities. Further effort is also required to quantify the robustness in optimal solutions so as to improve building performance stability.
1,009 citations
TL;DR: In this article, the authors present a comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads.
Abstract: This paper presents the latest comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads. A survey on the alternative DG units' configurations in the low voltage AC (LVAC) and DC (LVDC) distribution networks with several applications of microgrid systems in the viewpoint of the current and the future consumer equipments energy market is extensively discussed. Based on the economical, technical and environmental benefits of the renewable energy related DG units, a thorough comparison between the two types of microgrid systems is provided. The paper also investigates the feasibility, control and energy management strategies of the two microgrid systems relying on the most current research works. Finally, the generalized relay tripping currents are derived and the protection strategies in microgrid systems are addressed in detail. From this literature survey, it can be revealed that the AC and DC microgrid systems with multiconverter devices are intrinsically potential for the future energy systems to achieve reliability, efficiency and quality power supply.
1,004 citations
TL;DR: In this paper an attempt is made to review the various energy demand forecasting models to accurately predict the future energy needs.
Abstract: Energy is vital for sustainable development of any nation – be it social, economic or environment. In the past decade energy consumption has increased exponentially globally. Energy management is crucial for the future economic prosperity and environmental security. Energy is linked to industrial production, agricultural output, health, access to water, population, education, quality of life, etc. Energy demand management is required for proper allocation of the available resources. During the last decade several new techniques are being used for energy demand management to accurately predict the future energy needs. In this paper an attempt is made to review the various energy demand forecasting models. Traditional methods such as time series, regression, econometric, ARIMA as well as soft computing techniques such as fuzzy logic, genetic algorithm, and neural networks are being extensively used for demand side management. Support vector regression, ant colony and particle swarm optimization are new techniques being adopted for energy demand forecasting. Bottom up models such as MARKAL and LEAP are also being used at the national and regional level for energy demand management.
1,002 citations