scispace - formally typeset
Search or ask a question

Showing papers in "Renewable & Sustainable Energy Reviews in 2015"


Journal ArticleDOI
TL;DR: In this paper, the authors examined the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs).
Abstract: Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. lead–acid, NaS, Li-ion, and Ni–Cd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

1,279 citations


Journal ArticleDOI
TL;DR: In this article, the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries, were reviewed, and it was found that global residential energy consumption grew by 14% from 2000 to 2011, where population, urbanization and economic growth have been the main driving factors.
Abstract: Climate change and global warming as the main human societies’ threats are fundamentally associated with energy consumption and GHG emissions. The residential sector, representing 27% and 17% of global energy consumption and CO2 emissions, respectively, has a considerable role to mitigate global climate change. Ten countries, including China, the US, India, Russia, Japan, Germany, South Korea, Canada, Iran, and the UK, account for two-thirds of global CO2 emissions. Thus, these countries’ residential energy consumption and GHG emissions have direct, significant effects on the world environment. The aim of this paper is to review the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries. It was found that global residential energy consumption grew by 14% from 2000 to 2011. Most of this increase has occurred in developing countries, where population, urbanization and economic growth have been the main driving factors. Among the ten studied countries, all of the developed ones have shown a promising trend of reduction in CO2 emissions, apart from the US and Japan, which showed a 4% rise. Globally, the residential energy market is dominated by traditional biomass (40% of the total) followed by electricity (21%) and natural gas (20%), but the total proportion of fossil fuels has decreased over the past decade. Energy policy plays a significant role in controlling energy consumption. Different energy policies, such as building energy codes, incentives, energy labels have been employed by countries. Those policies can be successful if they are enhanced by making them mandatory, targeting net-zero energy building, and increasing public awareness about new technologies. However, developing countries, such as China, India and Iran, still encounter with considerable growth in GHG emissions and energy consumption, which are mostly related to the absence of strong, efficient policy.

1,212 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review different approaches, technologies, and strategies to manage large-scale schemes of variable renewable electricity such as solar and wind power, considering both supply and demand side measures.
Abstract: The paper reviews different approaches, technologies, and strategies to manage large-scale schemes of variable renewable electricity such as solar and wind power. We consider both supply and demand side measures. In addition to presenting energy system flexibility measures, their importance to renewable electricity is discussed. The flexibility measures available range from traditional ones such as grid extension or pumped hydro storage to more advanced strategies such as demand side management and demand side linked approaches, e.g. the use of electric vehicles for storing excess electricity, but also providing grid support services. Advanced batteries may offer new solutions in the future, though the high costs associated with batteries may restrict their use to smaller scale applications. Different “P2Y”-type of strategies, where P stands for surplus renewable power and Y for the energy form or energy service to which this excess in converted to, e.g. thermal energy, hydrogen, gas or mobility are receiving much attention as potential flexibility solutions, making use of the energy system as a whole. To “functionalize” or to assess the value of the various energy system flexibility measures, these need often be put into an electricity/energy market or utility service context. Summarizing, the outlook for managing large amounts of RE power in terms of options available seems to be promising.

1,180 citations


Journal ArticleDOI
TL;DR: A comprehensive review of research achievements on anaerobic digestion developments for biogas production is presented in this article, which includes a discussion of factors affecting efficiency (temperature, pH, C/N ratio, OLR and retention time).
Abstract: With the rising demand for renewable energy and environmental protection, anaerobic digestion of biogas technology has attracted considerable attention within the scientific community. This paper presents a comprehensive review of research achievements on anaerobic digestion developments for biogas production. The review includes a discussion of factors affecting efficiency (temperature, pH, C/N ratio, OLR and retention time), accelerants (greenery biomass, biological pure culture and inorganic additives), reactors (conventional anaerobic reactors, sludge retention reactors and anaerobic membrane reactors) and biogas AD processes (lignocellulose waste, municipal solid waste, food waste, livestock manure and waste activated sludge) based on substrate characteristics and discusses the application of each forementioned aspect. The factors affecting efficiency are crucial to anaerobic digestion, because they play a major role in biogas production and determine the metabolic conditions for microorganism growth. As an additive, an accelerant is not only regarded as a nutrient resource, but can also improve biodegradability. The focus of reactor design is the sufficient utilization of a substrate by changing the feeding method and enhancing the attachment to biomass. The optimal digestion process balances the optimal digest conditions with the cost-optimal input/output ratio. Additionally, establishment of theoretical and technological studies should emphasize practicality based on laboratory-scale experiments because further development of biogas plants would allow for a transition from household to medium- and large-scale projects; therefore, improving stability and efficiency are recommended for advancing AD research.

1,149 citations


Journal ArticleDOI
TL;DR: In this paper, an updated review on the fundamentals and reaction mechanisms of the slow-pyrolysis and hydrothermal carbonization (HTC) processes, identifies research gaps, and summarizes the physicochemical characteristics of chars for different applications in the industry.
Abstract: Slow-pyrolysis of biomass for the production of biochar, a stable carbon-rich solid by-product, has gained considerable interest due to its proven role and application in the multidisciplinary areas of science and engineering. An alternative to slow-pyrolysis is a relatively new process called hydrothermal carbonization (HTC) of biomass, where the biomass is treated with hot compressed water instead of drying, has shown promising results. The HTC process offers several advantages over conventional dry-thermal pre-treatments like slow-pyrolysis in terms of improvements in the process performances and economic efficiency, especially its ability to process wet feedstock without pre-drying requirement. Char produced from both the processes exhibits significantly different physiochemical properties that affect their potential applications, which includes but is not limited to carbon sequestration, soil amelioration, bioenergy production, and wastewater pollution remediation. This paper provides an updated review on the fundamentals and reaction mechanisms of the slow-pyrolysis and HTC processes, identifies research gaps, and summarizes the physicochemical characteristics of chars for different applications in the industry. The literature reviewed in this study suggests that hydrochar (HTC char) is a valuable resource and is superior to biochar in certain ways. For example, it contains a reduced alkali and alkaline earth and heavy metal content, and an increased higher heating value compared to the biochar produced at the same operating process temperature. However, its effective utilization would require further experimental research and investigations in terms of feeding of biomass against pressure; effects and relationships among feedstocks compositions, hydrochar characteristics and process conditions; advancement in the production technique(s) for improvement in the physicochemical behavior of hydrochar; and development of a diverse range of processing options to produce hydrochar with characteristics required for various industry applications.

1,061 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive review of research progress in this area, drawing on major contributions from two major research groups of the authors on torrefaction and densification at Canada and Taiwan as well as literatures.
Abstract: Torrefaction is a mild pyrolysis, which has been explored for the pretreatment of biomass to increase the heating value and hydrophobicity. Due to its potential applications for making torrefied pellets, which can be used as a high quality feedstock in gasification for high quality syngas production and as a substitute for coal in thermal power plants and metallurgical processes, torrefaction and densification have attracted great interest in recent years from both academia and bioenergy industry. This paper provides a comprehensive review of research progresses in this area, drawing on major contributions from two major research groups of the authors on torrefaction and densification at Canada and Taiwan as well as literatures. It is revealed that torrefaction of various biomass species and their major components, lignin, cellulose and hemicelluloses have been extensively studied in thermogravimetric apparatus (TGA) under both inert (N 2 ) and oxidative (O 2 , H 2 O) environments to elucidate the weight loss as a function of temperature, particle size and time. It was found that the higher heating value and saturated water uptake of torrefied biomass were a strong function of weight loss, which represents the degree of torrefaction. When torrefied sawdust is compressed into torrefied pellets, more mechanical energy is consumed and higher die temperature is required to make torrefied pellets of similar density and hardness as regular pellets. Simple economics analyses based on laboratory scale experimental data showed that because of the potential savings from pellets transport, handling and storage logistics, the overall cost for torrefied pellets can be lower than regular pellets in European market for both European and Canadian pellets. The gasification could be improved in terms of both energy efficiency and syngas quality because of the removal of oxygenated volatile compounds from torrefied biomass.

864 citations


Journal ArticleDOI
TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Abstract: Researches on the nanofluids have been increased very rapidly over the past decade. In spite of some inconsistency in the reported results and insufficient understanding of the mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer fluid. In the continuation of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is engineered by suspending dissimilar nanoparticles either in mixture or composite form. The idea of using hybrid nanofluids is to further improvement of heat transfer and pressure drop characteristics by trade-off between advantages and disadvantages of individual suspension, attributed to good aspect ratio, better thermal network and synergistic effect of nanomaterials. This review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids. Review showed that proper hybridization may make the hybrid nanofluids very promising for heat transfer enhancement, however, lot of research works is still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.

846 citations


Journal ArticleDOI
TL;DR: A review on the preparation of activated carbon from agricultural waste material is presented in this article, where various physical and chemical processes for the activation of the agricultural residues and their effects on the textural properties such as surface area and pore volume are discussed.
Abstract: A review on the preparation of the activated carbon from agricultural waste material is presented. The physical properties such as proximate and ultimate analysis of agricultural waste material were reviewed. The chemical compositions such as cellulose, hemicelluloses and lignin contents were also discussed. The effects of various parameters on the preparation such as carbonization and activation temperature, time, types of activating agents and impregnation ratio were reviewed. Various physical and chemical processes for the activation of the agricultural residues and their effects on the textural properties such as surface area and pore volume were discussed. The low cost, renewable and relatively less expensive of the agricultural waste were found to be efficiently being converted into wealth. The uses of activated carbon derived from agricultural residues in many fields were evidently proven in the review. The reaction kinetic modeling on the pyrolysis and activation of agricultural wastes were also reviewed.

846 citations


Journal ArticleDOI
TL;DR: In this article, the main harvesting processes applied to microalgae, presenting the main advantages and disadvantages of each method, to allow the selection of an appropriate procedure to effectively separate microalgal biomass from the culture medium.
Abstract: Research studies on microalgae have increased in the last decades due to the wide range of applications associated to these photosynthetic microorganisms. Microalgae are an important source of oils and other biomolecules that can be used in the production of biofuels and high-valued products. However, the use of microalgae in these green processes is still not economically viable. One of the main costs associated to microalgal production is related to the harvesting process, as it usually accounts for about 20–30% of total cost. Therefore, this review focuses on the main harvesting processes applied to microalgae, presenting the main advantages and disadvantages of each method, to allow the selection of an appropriate procedure to effectively separate microalgal biomass from the culture medium. To reduce the associated costs, it is common to harvest microalgae in a two-step separation: (i) thickening procedures, in which microalgal slurry is concentrated to about 2–7% of total suspended solids; and (ii) dewatering procedures, which result in the concentration of microalgal slurry to 15–25% of total suspended solids. Selection of the adequate harvesting methods depends on the characteristics of the target microorganism and also on the type and value of the end product.

725 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed the existing global pumped hydro energy storage capacities, technological development, and hybrid systems and recommended the best possible options for small autonomous island grids and massive energy storage, where the energy efficiency of PHES varies in practice between 70% and 80%.
Abstract: The pumped hydro energy storage (PHES) is a well-established and commercially-acceptable technology for utility-scale electricity storage and has been used since as early as the 1890s. Hydro power is not only a renewable and sustainable energy source, but its flexibility and storage capacity also make it possible to improve grid stability and to support the deployment of other intermittent renewable energy sources such as wind and solar. As a result, a renewed interest in PHES and a demand for the rehabilitation of old small hydro power plants are emerging globally. With regard to PHES, advances in turbine design are required to enhance plant performance and flexibility and new strategies for optimizing storage capacity and for maximizing plant profitability in the deregulated energy market. In the early 2000s, this technology has again emerged as an economically and technologically acceptable option for peak load shaving and wind and solar energy storage for power quality assurance. Furthermore, renewable energy sources due to their fluctuating nature cannot maintain or regulate continuous supply of power and hence require bulk electricity storage. The present study aims at reviewing the existing global PHES capacities, technological development, and hybrid systems (wind-hydro, solar pv-hydro, and wind-pv-hydro) and recommending the best possible options. The review explores that PHES is the most suitable technology for small autonomous island grids and massive energy storage, where the energy efficiency of PHES varies in practice between 70% and 80% with some claiming up to 87%. Around the world, PHES size mostly nestles in the range of 1000–1500 MW, being as large as 2000–3000 MW. On the other hand, photovoltaic based pumped storage systems have been used for very small scale (load of few houses) only.

723 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the latest development in electric vehicle technologies, impacts of electric vehicle roll out and opportunities brought by electric vehicle deployment, including vehicle-to-grid technology and as the solution for the renewable energy intermittency issue.
Abstract: Electrifying transportation is a promising approach to alleviate the climate change issue. The adoption of electric vehicle into market has introduced significant impacts on various fields, especially the power grid. Various policies have been implemented to foster the electric vehicle deployment and the increasing trend of electric vehicle adoption in the recent years has been satisfying. The continual development of electric vehicle power train, battery and charger technologies have further improved the electric vehicle technologies for wider uptake. Despite the environmental and economical benefits, electric vehicles charging introduce negative impacts on the existing network operation. Appropriate charging management strategies can be implemented to cater for this issue. Furthermore, electric vehicle integration in the smart grid can bring many potential opportunities, especially from the perspective of vehicle-to-grid technology and as the solution for the renewable energy intermittency issue. This paper reviews the latest development in electric vehicle technologies, impacts of electric vehicle roll out and opportunities brought by electric vehicle deployment.

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive and systematic literature review of Artificial Intelligence based short-term load forecasting techniques and provide the major objective of this study is to review, identify, evaluate and analyze the performance of artificial Intelligence based load forecast models and research gaps.
Abstract: Electrical load forecasting plays a vital role in order to achieve the concept of next generation power system such as smart grid, efficient energy management and better power system planning. As a result, high forecast accuracy is required for multiple time horizons that are associated with regulation, dispatching, scheduling and unit commitment of power grid. Artificial Intelligence (AI) based techniques are being developed and deployed worldwide in on Varity of applications, because of its superior capability to handle the complex input and output relationship. This paper provides the comprehensive and systematic literature review of Artificial Intelligence based short term load forecasting techniques. The major objective of this study is to review, identify, evaluate and analyze the performance of Artificial Intelligence (AI) based load forecast models and research gaps. The accuracy of ANN based forecast model is found to be dependent on number of parameters such as forecast model architecture, input combination, activation functions and training algorithm of the network and other exogenous variables affecting on forecast model inputs. Published literature presented in this paper show the potential of AI techniques for effective load forecasting in order to achieve the concept of smart grid and buildings.

Journal ArticleDOI
TL;DR: The role of methanol and several recent achievements by previous researchers have also been included in this article, where modification techniques that can be used to improve the drawbacks of TiO 2, such as the addition of sacrificial agents into the solution are presented.
Abstract: Recently, great attention has been focused on hydrogen as a potential energy vector and on the use of water-splitting technology as a clean and renewable means to generate hydrogen using solar energy. Numerous attempts have been made to develop photo-catalysts that work not only under UV light but also under visible-light illumination to efficiently utilize solar energy. One of the most well-known photo-catalysts used in the past forty years is TiO 2 . Despite having excellent characteristics as a photo-catalyst, TiO 2 also has some limitations. This paper presents modification techniques that can be used to improve the drawbacks of TiO 2 , such as the addition of sacrificial agents into the solution. The role of sacrificial agents, such as methanol and several recent achievements by previous researchers have also been included.

Journal ArticleDOI
TL;DR: In this paper, recent developments in the production of hydrogen fuel, applications and storage together with the environmental impacts of hydrogen as energy carrier are emphasized. But, storage remains a big challenge.
Abstract: Transportation of people and commodities being a socio-economic criterion needs clean energy and the demand is kept on increasing with modernization. Consequently, generation of a fuel with safer, efficient, economic and reasonably environmental friendly features is the key issue towards fulfilling such demands. Hydrogen seems to be an ideal synthetic energy carrier due to its lightweight, exclusive abundance and environmentally benign oxidation product (water). However, storage remains a big challenge. In this communication, recent developments in the production of hydrogen fuel, applications and storage together with the environmental impacts of hydrogen as energy carrier are emphasized.

Journal ArticleDOI
TL;DR: In this paper, the key cognitive biases and motivational factors that may explain why energy-related behavior so often fails to align with either the personal values or material interests of consumers are explored.
Abstract: Household energy conservation has emerged as a major challenge and opportunity for researchers, practitioners and policymakers. Consumers also seem to be gaining greater awareness of the value and need for sustainable energy practices, particularly amid growing public concerns over greenhouse gas emissions and climate change. Yet even with adequate knowledge of how to save energy and a professed desire to do so, many consumers still fail to take noticeable steps towards energy efficiency and conservation. There is often a sizeable discrepancy between peoples’ self-reported knowledge, values, attitudes and intentions, and their observable behaviour—examples include the well-known ‘knowledge-action gap’ and ‘value-action gap’. But neither is household energy consumption driven primarily by financial incentives and the rational pursuit of material interests. In fact, people sometimes respond in unexpected and undesirable ways to rewards and sanctions intended to shift consumers’ cost–benefit calculus in favour of sustainable behaviours. Why is this so? Why is household energy consumption and conservation difficult to predict from either core values or material interests? By drawing on critical insights from behavioural economics and psychology, we illuminate the key cognitive biases and motivational factors that may explain why energy-related behaviour so often fails to align with either the personal values or material interests of consumers. Understanding these psychological phenomena can make household and community responses to public policy interventions less surprising, and in parallel, can help us design more cost-effective and mass-scalable behavioural solutions to encourage renewable and sustainable energy use among consumers.

Journal ArticleDOI
TL;DR: A review of the worldwide history, current status, and predictable future trend of bioenergy and bio-fuels can be found in this paper, with a focus on the development and utilization of renewable energy such as bioenergy.
Abstract: The recent energy independence and climate change policies encourage development and utilization of renewable energy such as bioenergy. Biofuels in solid, liquid, and gaseous forms have been intensively researched, produced, and used over the past 15 years. This paper reviews the worldwide history, current status, and predictable future trend of bioenergy and biofuels. Bioenergy has been utilized for cooking, heating, and lighting since the dawn of humans. The energy stored in annually produced biomass by terrestrial plants is 3–4 times greater than the current global energy demand. Solid biofuels include firewood, wood chips, wood pellets, and wood charcoal. The global consumption of firewood and charcoal has been remaining relatively constant, but the use of wood chips and wood pellets for electricity (biopower) generation and residential heating doubled in the past decade and will increase steadily into the future. Liquid biofuels cover bioethanol, biodiesel, pyrolysis bio-oil, and drop-in transportation fuels. Commercial production of bioethanol from lignocellulosic materials has just started, supplementing the annual supply of 22 billion gallons predominantly from food crops. Biodiesel from oil seeds reached the 5670 million gallons/yr production capacity, with further increases depending on new feedstock development. Bio-oil and drop-in biofuels are still in the development stage, facing cost-effective conversion and upgrading challenges. Gaseous biofuels extend to biogas and syngas. Production of biogas from organic wastes by anaerobic digestion has been rapidly increasing in Europe and China, with the potential to displace 25% of the current natural gas consumption. In comparison, production of syngas from gasification of woody biomass is not cost-competitive and therefore, narrowly practiced. Overall, the global development and utilization of bioenergy and biofuels will continue to increase, particularly in the biopower, lignocellulosic bioethanol, and biogas sectors. It is expected that by 2050 bioenergy will provide 30% of the world’s demanded energy.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of recent advances in several biochar utilizations including its use as catalyst, soil amendment, fuel cell, contaminant adsorbent, gas storage and activated carbon.
Abstract: Biomass thermochemical processes result in a common byproduct char. The char is also called biochar particularly when it is used as a soil amendment for soil health improvement. Effective utilization of biochar is critical for improving economic viability and environmental sustainability of biomass thermochemical technologies. Application of biochar for both agricultural and environmental benefits has been studied and reviewed extensively. However, there are limited reviews on other biochar applications, such as for catalysis and adsorption. This paper provides an overview of recent advances in several biochar utilizations including its use as catalyst, soil amendment, fuel cell, contaminant adsorbent, gas storage and activated carbon. Discussions on biochar production methods, properties and advanced characterization techniques are also provided. Biochar is a valuable resource, however, its effective utilization require further investigation of its structure and properties, and methods to modify those.

Journal ArticleDOI
TL;DR: In this article, a review of solid-liquid phase change materials (PCMs) for thermal energy storage applications is presented, where the morphology of particles is identified as a key influencing factor on the thermal and chemical stability and the mechanical strength of encapsulated PCMs.
Abstract: Various types of solid–liquid phase change materials (PCMs) have been reviewed for thermal energy storage applications. The review has shown that organic solid–liquid PCMs have much more advantages and capabilities than inorganic PCMs but do possess low thermal conductivity and density as well as being flammable. Inorganic PCMs possess higher heat storage capacities and conductivities, cheaper and readily available as well as being non-flammable, but do experience supercooling and phase segregation problems during phase change process. The review has also shown that eutectic PCMs have unique advantage since their melting points can be adjusted. In addition, they have relatively high thermal conductivity and density but they possess low latent and specific heat capacities. Encapsulation technologies and shell materials have also been examined and limitations established. The morphology of particles was identified as a key influencing factor on the thermal and chemical stability and the mechanical strength of encapsulated PCMs. In general, in-situ polymerization method appears to offer the best technological approach in terms of encapsulation efficiency and structural integrity of core material. There is however the need for the development of enhancement methods and standardization of testing procedures for microencapsulated PCMs.

Journal ArticleDOI
TL;DR: In this paper, the authors systematically review the state-of-the-art of biogas cleaning and upgrading technologies, including product purity and impurities, methane recovery and loss, upgrading efficiency and the investment and operating costs.
Abstract: Biogas is experiencing a period of rapid development and biogas upgrading is attracting increasing attention. Consequently, the market for biogas upgrading is facing significant challenges in terms of energy consumption and operating costs. Selection of upgrading technology is site-specific, case-sensitive and dependent on the biogas utilisation requirements and local circumstances. Therefore, matching the technology selected for use to specific requirements is significantly important. This paper systematically reviews the state-of-the-art of biogas cleaning and upgrading technologies, including product purity and impurities, methane recovery and loss, upgrading efficiency and the investment and operating costs. In addition, the potential utilisation of biogas and the corresponding requirements on gas quality are investigated in depth. Based on the results of comparisons between the technical features of upgrading technologies, the specific requirements for different gas utilizations and the relevant investment and operating costs, recommendations are made regarding appropriate technology.

Journal ArticleDOI
TL;DR: Current technologies for sustainable bioethanol production from agro-residues are discussed, which involves four processes of pre-treatment, enzymatic hydrolysis, fermentation and distillation.
Abstract: Due to increasing population and industrialization, the demand of energy is increasing day by day. Simultaneously, the worldwide bio-ethanol production is increasing constantly. The maize, sugarcane and sugar beets are major traditional agricultural crops used as bio-ethanol production but these crops are unable to meet the global demand of bio-ethanol production due to their primary value of food and feed. Hence, cellulosic materials such as agro-residues are attractive feedstock for bio-ethanol production. The cellulosic material is the most abundant biomass and agro-residues on the earth. Bio-ethanol from agro-residues could be a promising technology that involves four processes of pre-treatment, enzymatic hydrolysis, fermentation and distillation. These processes have several challenges and limitations such as biomass transport and handling, and efficient pre-treatment process for removing the lignin from the lignocellulosic agro-residues. Proper pre-treatment process may increase the concentrations of fermentable sugars after enzymatic hydrolysis, thereby improving the efficiency of the whole process. Others, efficient microbes and genetically modified microbes may also enhance the enzymatic hydrolysis. Conversion of cellulose to ethanol requires some new pre-treatment, enzymatic and fermentation technologies, to make the whole process cost effective. In this review, we have discussed about current technologies for sustainable bioethanol production from agro-residues.

Journal ArticleDOI
TL;DR: In this article, a review focusing on various hydrogen producing and storing methods that can be employed for creating a hydrogen economy is presented, where the latest advancements that have been made on different hydrogen storing materials and hydrogen storing technologies which have proven useful both on gravimetric and volumetric basis, have been highlighted.
Abstract: The review focuses on various hydrogen producing and storing methods that can be employed for creating a hydrogen economy. The latest advancements that have been made on different hydrogen storing materials and hydrogen storing technologies which have proven useful both on gravimetric and volumetric basis, have been highlighted. The encouraging and hopeful aspect of their developments is that the most of the materials are approaching the hydrogen storing capacity requirement that have been laid down by DOE. The classification of different systems has been done on basis of their storage mechanism, keeping in mind their advantages and disadvantages while they tend to store hydrogen both in the atomic and molecular form.

Journal ArticleDOI
TL;DR: The authors provides an overview of the main issues and challenges associated with energy demand reduction, summarises how this challenge is framed by key academic disciplines, indicates how these can provide complementary insights for policymakers and argues that a socotechnical perspective can provide a deeper understanding of the nature of this challenge and the processes through which it can be achieved.
Abstract: Most commentators expect improved energy efficiency and reduced energy demand to provide the dominant contribution to tackling global climate change. But at the global level, the correlation between increased wealth and increased energy consumption is very strong and the impact of policies to reduce energy demand is both limited and contested. Different academic disciplines approach energy demand reduction in different ways: emphasising some mechanisms and neglecting others, being more or less optimistic about the potential for reducing energy demand and providing insights that are more or less useful for policymakers. This article provides an overview of the main issues and challenges associated with energy demand reduction, summarises how this challenge is ‘framed’ by key academic disciplines, indicates how these can provide complementary insights for policymakers and argues that a ‘sociotechnical’ perspective can provide a deeper understanding of the nature of this challenge and the processes through which it can be achieved. The article integrates ideas from the natural sciences, economics, psychology, innovation studies and sociology but does not give equal weight to each. It argues that reducing energy demand will prove more difficult than is commonly assumed and current approaches will be insufficient to deliver the transformation required.

Journal ArticleDOI
TL;DR: In this article, the authors explored the influences of the active metal, support, promoter, preparation methods, calcination temperature, reducing environment, particle size and reactor choice on catalytic activity and carbon deposition for the dry reforming of methane.
Abstract: This review will explore the influences of the active metal, support, promoter, preparation methods, calcination temperature, reducing environment, particle size and reactor choice on catalytic activity and carbon deposition for the dry reforming of methane Bimetallic (Ni−Pt, Ni−Rh, Ni−Ce, Ni−Mo, Ni−Co) and monometallic (Ni) catalysts are preferred for dry reforming compared to noble metals (Rh, Ru and Pt) due to their low-cost Investigation of support materials indicated that ceria−zirconia mixtures, ZrO2 with alkali metals (Mg2+, Ca2+, Y2+) addition, MgO, SBA-15, ZSM-5, CeO2, BaTiO3 and Ca08Sr02TiO3 showed improved catalytic activities and decreased carbon deposition The modifying effects of cerium (Ce), magnesium (Mg) and yttrium (Y) were significant for dry reforming of methane MgO, CeO2 and La2O3 promoters for metal catalysts supported on mesoporous materials had the highest catalyst stability among all the other promoters Preparation methods played an important role in the synthesis of smaller particle size and higher dispersion of active metals Calcination temperature and treatment duration imparted significant changes to the morphology of catalysts as evident by XRD, TPR and XPS Catalyst reduction in different environments (H2, He, H2/He, O2/He, H2−N2 and CH4/O2) indicated that probably the mixture of reducing agents will lead to enhanced catalytic activities Smaller particle size (

Journal ArticleDOI
TL;DR: In this paper, the authors provide a source of information on thermal energy use in buildings, its drivers, and their past, present and future trends on a global and regional basis.
Abstract: The purpose of this paper is to provide a source of information on thermal energy use in buildings, its drivers, and their past, present and future trends on a global and regional basis. Energy use in buildings forms a large part of global and regional energy demand. The importance of heating and cooling in total building energy use is very diverse with this share varying between 18% and 73%. Biomass is still far the dominant fuel when a global picture is considered; the role of electricity is substantially growing, and the direct use of coal is disappearing from this sector, largely replaced by electricity and natural gas in the most developed regions. This paper identifies the different drivers of heating and cooling energy demand, and decomposes this energy demand into key drivers based on a Kaya identity approach: number of households, persons per household, floor space per capita and specific energy consumption for residential heating and cooling; and GDP, floor space per GDP, and specific energy consumption for commercial buildings. This paper also reviews the trends in the development of these drivers for the present, future – and for which data were available, for the past – in 11 world regions as well as globally. Results show that in a business-as-usual scenario, total residential heating and cooling energy use is expected to more or less stagnate, or slightly decrease, in the developed parts of the world. In contrast, commercial heating and cooling energy use will grow in each world region. Finally, the results show that per capita total final residential building energy use has been stagnating in the vast majority of world regions for the past three decades, despite the very significant increases in energy service levels in each of these regions.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dynamic impacts of GDP growth, energy consumption and population growth on CO2 emissions using econometric approaches for Malaysia and showed that the hypothesis of the EKC is not valid in Malaysia during the study period.
Abstract: This study investigates the dynamic impacts of GDP growth, energy consumption and population growth on CO2 emissions using econometric approaches for Malaysia. Empirical results from ARDL bounds testing approach show that over the period of 1970–1980, per capita CO2 emissions decreased with increasing per capita GDP (economic growth); however from 1980 to 2009, per capita CO2 emissions increased sharply with a further increase of per capita GDP. This is also supported by the dynamic ordinary least squared (DOLS) and the Sasabuchi–Lind–Mehlum U (SLM U test) tests. Consequently, the hypothesis of the EKC is not valid in Malaysia during the study period. The results also demonstrate that both per capita energy consumption and per capita GDP has a long term positive impacts with per capita carbon emissions, but population growth rate has no significant impacts on per capita CO2 emission. However, the study suggests that in the long run, economic growth may have an adverse effect on the CO2 emissions in Malaysia. Thus, significant transformation of low carbon technologies such as renewable energy and energy efficiency could contribute to reduce the emissions and sustain the long run economic growth.

Journal ArticleDOI
TL;DR: An overview of the recent development in the production of activated carbon electrodes from agricultural waste biomass for application in supercapacitors is presented in this article, where the effects of activating methods (physical, chemical and microwave-induced) and conditions on the properties of activated carbons are reviewed.
Abstract: An overview of the recent development in the production of activated carbon electrodes from agricultural waste biomass for application in supercapacitors is presented. The use of agricultural waste biomass as precursor for the production of activated carbons has been on the increase lately because it is cheap, readily available and also viewed as a veritable way of combating waste disposal problem in the agricultural industries. The effects of activating methods (physical, chemical and microwave-induced) and conditions on the properties of activated carbons are reviewed. The survey of articles published in the last decade indicates the viability of biomass active carbons being used as electrodes in supercapacitors. Under optimum process conditions, active carbons with specific capacitance as high as 374 F g−1 and high-rate long-cycle stability at 4 A g−1 have been produced. In this review, the influence of surface modification on activated carbon properties is also discussed. From the survey literature, it can be seen that the changes in surface chemistry and the introduction of specific surface functionalities on the surface of activated carbons impacted more on the electrochemical properties than the physiochemical properties of the activated carbons.

Journal ArticleDOI
TL;DR: In this article, an economic assessment of the potential revenues coming from the recovery of 14 e-products (e.g., LCD notebooks, LED notebooks, CRT TVs, LCD TVs, LED TVs, CRTs, LCD monitors, LED monitors, cell phones, smart phones, PV panels, HDDs, SSDs and tablets) on the base of current and future disposed volumes in Europe is presented.
Abstract: Waste from Electric and Electronic Equipments (WEEEs) is currently considered to be one of the fastest growing waste streams in the world, with an estimated growth rate going from 3% up to 5% per year. The recycling of Electric or electronic waste (E-waste) products could allow the diminishing use of virgin resources in manufacturing and, consequently, it could contribute in reducing the environmental pollution. Given that EU is trying, since the last two decades, to develop a circular economy based on the exploitation of resources recovered by wastes, a comprehensive framework supporting the decision-making process of multi-WEEE recycling centres will be analysed in this paper. An economic assessment will define the potential revenues coming from the recovery of 14 e-products (e.g. LCD notebooks, LED notebooks, CRT TVs, LCD TVs, LED TVs, CRT monitors, LCD monitors, LED monitors, cell phones, smart phones, PV panels, HDDs, SSDs and tablets) on the base of current and future disposed volumes in Europe. Moreover, a sensitivity analysis will be used to test the impact of some critical variables (e.g. price of recovered materials, input materials composition, degree of purity obtained by the recycling process, volumes generated, and percentage of collected waste) on specific economic indexes. A discussion of the economic assessment results shows the main challenges in the recycling sector and streamlines some concrete solutions.

Journal ArticleDOI
TL;DR: Algae are fast growing biomass and can be converted to Biodiesel fuel and need a light:dark regime for productive photosynthesis and the effect of temperature and light intensity on their growth is studied.
Abstract: Algae are fast growing biomass and can be converted to Biodiesel fuel. The demand of biodiesel is growing worldwide. Microalgae need a light:dark regime for productive photosynthesis. Light conditions and Temperature affect directly the growth rate of microalgae (duration and intensity).Literature review of some Green algae species Chlorella, Spirogyra, Chlamydomonas, Botryococcus, Scenedesmus, Neochloris, Haematococcus, Nannochloropsis, Ulva species and few species of brown algae, red algae, blue green algae were chosen to study the effect of temperature and light intensity on their growth. Optimum temperature range 20 °C to30 °C was observed for growth of different algae species. Light irradiance varies between 33 µmol m−2 s−1 to 400 µmol m−2 s−1. Maximum growth rate was found 1.73 d−1 for Selenastrum minutum at 35 °C and 420 µmol m−2 s−1 irradiance. Minimum growth rate (0.10 d−1) was reported for Botryococcus braunii KMITL 2 strain at temperature 25 °C, photoperiod 24:0 and 200 µmol m−2 s−1 irradiance.

Journal ArticleDOI
TL;DR: In this paper, the decoupling effect between carbon emissions and economic growth in China has been analyzed, showing that the reduction effect of inhibiting factors of carbon emissions was less than the driving effect of economic growth, and the economy grew with increased carbon emissions.
Abstract: In order to find the efficient ways to reduce carbon emission intensity in China, we utilize the LMDI method to decompose the changes of China׳s carbon emissions and carbon emission intensity from 1996 to 2010, from the perspectives of energy sources and industrial structure respectively. Then we introduce the decoupling index to analyze the decoupling relationship between carbon emissions and economic growth in China. The results indicate that, on the one hand, economic growth appeared as the main driver of carbon emissions increase in the past decades, while the decrease of energy intensity and the cleaning of final energy consumption structure played significant roles in curbing carbon emissions; meanwhile, the secondary industry proved the principal source of carbon emissions reduction among the three industries and had relatively higher potential. On the other hand, when the decoupling relationship is considered, most years during the study period saw the relative decoupling effect between carbon emissions and economic growth, which indicated that the reduction effect of inhibiting factors of carbon emissions was less than the driving effect of economic growth, and the economy grew with increased carbon emissions; there appeared the absolute decoupling effect in 1997, 2000 and 2001, which implied that the economy grew while carbon emissions decreased; whereas no decoupling effect was identified in 2003 and 2004.

Journal ArticleDOI
TL;DR: In this article, an extensive literature survey on Hybrid Renewable Energy Systems (HRES) and state-of-the-art application of optimization tools and techniques to microgrids, integrating renewable energies is presented.
Abstract: Fast depleting fossil fuels and the growing awareness for environmental protection have led us to the energy crisis. Hence, efforts are being made by researchers to investigate new ways to extract energy from renewable sources. ‘Microgrids’ with Distributed Generators (DG) are being implemented with renewable energy systems. Optimization methods justify the cost of investment of a microgrid by enabling economic and reliable utilization of the resources. This paper strives to bring to light the concept of Hybrid Renewable Energy Systems (HRES) and state of art application of optimization tools and techniques to microgrids, integrating renewable energies. With an extensive literature survey on HRES, a framework of diverse objectives has been outlined for which optimization approaches were applied to empower the microgrid. A review of modelling and applications of renewable energy generation and storage sources is also presented.