scispace - formally typeset
Search or ask a question

Showing papers by "Frederico Arroja published in 2017"


Journal ArticleDOI
TL;DR: In this article, the authors present the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the "M5" call for a medium-sized mission.
Abstract: Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology. In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the "M5" call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation scienceand cannot be obtained by any other means than a dedicated space mission.

17 citations


Journal ArticleDOI
TL;DR: In this article, a thorough analysis of the singular Vilenkin instanton and the Hawking-Turok instanton with a quadratic scalar field potential in the Eddington-inspired Born-Infeld gravity theory is presented.
Abstract: In this work, we investigate O(4)-symmetric instantons within the Eddington-inspired-Born-Infeld gravity theory (EiBI) . We discuss the regular Hawking-Moss instanton and find that the tunneling rate reduces to the General Relativity (GR) value, even though the action value is different by a constant. We give a thorough analysis of the singular Vilenkin instanton and the Hawking-Turok instanton with a quadratic scalar field potential in the EiBI theory. In both cases, we find that the singularity can be avoided in the sense that the physical metric, its scalar curvature and the scalar field are regular under some parameter restrictions, but there is a curvature singularity of the auxiliary metric compatible with the connection. We find that the on-shell action is finite and the probability does not reduce to its GR value. We also find that the Vilenkin instanton in the EiBI theory would still cause the instability of the Minkowski space, similar to that in GR, and this is observationally inconsistent. This result suggests that the singularity of the auxiliary metric may be problematic at the quantum level and that these instantons should be excluded from the path integral.

13 citations


Journal ArticleDOI
TL;DR: In this paper, a set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation, were developed.
Abstract: We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\rm NL}$ running spectral index, $n_{\rm NG}$, using WMAP 9-year data. Our final bounds (68\% C.L.) read $-0.6< n_{\rm NG}<1.4$, $-0.3< n_{\rm NG}<1.2$, $-1.1

11 citations


Journal ArticleDOI
TL;DR: In this paper, the mimetic cubic Horndeskiy model is used to model the dark universe. But it is not a perfect fluid model, and it is difficult to distinguish it from the PFDE model with unity sound speed.
Abstract: In this paper, we propose to use the mimetic Horndeski model as a model for the dark universe. Both cold dark matter (CDM) and dark energy (DE) phenomena are described by a single component, the mimetic field. In linear theory, we show that this component effectively behaves like a perfect fluid with zero sound speed and clusters on all scales. For the simpler mimetic cubic Horndeski model, if the background expansion history is chosen to be identical to a perfect fluid DE (PFDE) then the mimetic model predicts the same power spectrum of the Newtonian potential as the PFDE model with zero sound speed. In particular, if the background is chosen to be the same as that of LCDM, then also in this case the power spectrum of the Newtonian potential in the mimetic model becomes indistinguishable from the power spectrum in LCDM on linear scales. A different conclusion may be found in the case of non-adiabatic perturbations. We also discuss the distinguishability, using power spectrum measurements from LCDM N-body simulations as a proxy for future observations, between these mimetic models and other popular models of DE. For instance, we find that if the background has an equation of state equal to -0.95 then we will be able to distinguish the mimetic model from the PFDE model with unity sound speed. On the other hand, it will be hard to do this distinction with respect to the LCDM model.

7 citations