scispace - formally typeset
Search or ask a question

Showing papers by "G. Gemme published in 2018"


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1257 moreInstitutions (142)
TL;DR: The null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning in primordial black hole binary formation scenario and strengthens the presently placed bounds from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and EROS Collaborations.
Abstract: We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M⊙–1.0 M⊙. We use the null result to constrain the binary merger rate of (0.2 M⊙, 0.2 M⊙) binaries to be less than 3.7×105 Gpc-3 yr-1 and the binary merger rate of (1.0 M⊙, 1.0 M⊙) binaries to be less than 5.2×103 Gpc-3 yr-1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M⊙ black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M⊙ black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.

116 citations


Journal ArticleDOI
TL;DR: In this paper, the authors revisited the binary neutron star coalescence with a focus on longer signal durations up until the end of the Second Advanced LIGO-Virgo Observing run, 8.5 days after the coalescence of GW170817.
Abstract: One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here we revisit the neutron star remnant scenario with a focus on longer signal durations up until the end of the Second Advanced LIGO-Virgo Observing run, 8.5 days after the coalescence of GW170817. The main physical scenario for such emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveformand different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. This study however serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity.

93 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott, T. D. Abbott2, Fausto Acernese3  +1220 moreInstitutions (118)
TL;DR: After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, no evidence of gravitational waves of any polarization is found.
Abstract: We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.

89 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed a standard siren analysis of GW170817 and found that all galaxies brighter than 0.01 L^\star_B$ are equally likely to host a BNS merger.
Abstract: We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we consider each galaxy within the GW170817 localization region as a potential host; combining the redshift from each galaxy with the distance estimate from GW170817 provides an estimate of the Hubble constant, $H_0$. We then combine the $H_0$ values from all the galaxies to provide a final measurement of $H_0$. We explore the dependence of our results on the thresholds by which galaxies are included in our sample, as well as the impact of weighting the galaxies by stellar mass and star-formation rate. Considering all galaxies brighter than $0.01 L^\star_B$ as equally likely to host a BNS merger, we find $H_0= 76^{+48}_{-23}$ km s$^{-1}$ Mpc$^{-1}$ (maximum a posteriori and 68.3% highest density posterior interval; assuming a flat $H_0$ prior in the range $\left[ 10, 220 \right]$ km s$^{-1}$ Mpc$^{-1}$). Restricting only to galaxies brighter than $0.626 L^\star_B$ tightens the measurement to $H_0= 77^{+37}_{-18}$ km s$^{-1}$ Mpc$^{-1}$. We show that weighting the host galaxies by stellar mass or star-formation rate provides entirely consistent results with potentially tighter constraints. While these statistical estimates are inferior to the value from the counterpart standard siren measurement utilizing NGC 4993 as the unique host, $H_0=76^{+19}_{-13}$ km s$^{-1}$ Mpc$^{-1}$ (determined from the same publicly available data), our analysis is a proof-of-principle demonstration of the statistical approach first proposed by Bernard Schutz over 30 years ago.

78 citations


Journal ArticleDOI
Fausto Acernese1, Todd Adams, Kazuhiro Agatsuma, L. Aiello  +281 moreInstitutions (30)
TL;DR: In this article, the authors described the advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during the O2 run of the LIGO-Virgo system.
Abstract: In August 2017, advanced Virgo joined advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications; this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction algorithm. A photon calibrator has been used to establish the sign of h(t) and to make an independent partial cross-check of the systematic uncertainties. The uncertainties reached for the latest h(t) version are 5.1% in amplitude, 40 mrad in phase and 20 mu s in timing.

62 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe directed searches for continuous gravitational waves from sixteen well localized candidate neutron stars assuming none of the stars has a binary companion, and set upper limits on intrinsic gravitational wave strain as strict as $1\times10^{-25}, on fiducial neutron star ellipticity as strong as $2\times 10^{-9}, and on fiducial $r$-mode amplitude as tight as $3 \times 10-8}.
Abstract: We describe directed searches for continuous gravitational waves from sixteen well localized candidate neutron stars assuming none of the stars has a binary companion. The searches were directed toward fifteen supernova remnants and Fomalhaut~b, an extrasolar planet candidate which has been suggested to be a nearby old neutron star. Each search covered a broad band of frequencies and first and second time derivatives. After coherently integrating spans of data from the first Advanced LIGO observing run of 3.5--53.7 days per search, applying data-based vetoes and discounting known instrumental artifacts, we found no astrophysical signals. We set upper limits on intrinsic gravitational wave strain as strict as $1\times10^{-25}$, on fiducial neutron star ellipticity as strict as $2\times10^{-9}$, and on fiducial $r$-mode amplitude as strict as $3\times10^{-8}$.

51 citations


Journal ArticleDOI
TL;DR: In this paper, the authors search for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period.
Abstract: Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origin could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational wave and neutrino emission processes.

35 citations


Journal ArticleDOI
TL;DR: In this article, a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1) is presented.
Abstract: We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure significance. Those with false alarm rates of less than 10^-5 Hz (about one per day) are used as the search sample for gamma-ray follow-up. No GW candidates were found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting GBM events, the two with lowest false alarm rates were the gamma-ray transient GW150914-GBM presented in Connaughton et al. (2016) and a solar flare in chance coincidence with a GW candidate.

31 citations


Journal ArticleDOI
Fausto Acernese1, Todd Adams2, Kazuhiro Agatsuma3, Lloyd Paul Aiello  +266 moreInstitutions (31)
TL;DR: The Advanced VIRGO (AdV) is a 3 kilometer-long arms second generation interferometer located in Cascina, near Pisa in Italy.
Abstract: The LIGO and the Virgo collaborations have recently announced the first detections of Gravitational Waves. Due to their weak amplitude, Gravitational Waves are expected to produce a very small effect on free-falling masses, which undergo a displacement of the order of 10-18 m for a Km-scale mutual distance. This discovery showed that interferometric detectors are suitable to reveal such a feeble effect, and therefore represent a new tool for astronomy, astrophysics and cosmology in the understanding of the Universe. To better reconstruct the position of the Gravitational Wave source and increase the signal-to-noise ratio of the events by means of multiple coincidence, a network of detectors is necessary. In the USA, the LIGO project has recently concluded its second Observation Run (O2) with a couple of twin 4 kilometer-long arms detectors which are placed in Washington State and Louisiana. Advanced VIRGO (AdV) is a 3 kilometer-long arms second generation interferometer situated in Cascina, near Pisa in Italy. The installation of AdV has been completed in 2016, and the first commissioning phase allowed to get to the target early-stage sensitivity, which was sufficient to join LIGO in the O2 scientific run. In this paper, the challenges of the commissioning of AdV will be presented, together with its current performances and future perspectives. Finally, in the last paragraph the latest discoveries that occurred after the ICNFP 2017 conference will be also described.

18 citations



Posted Content
TL;DR: In this paper, the electro-magnetic feedback of the Advanced Virgo (AdV) Input Mirror Payload (IMP) in response to a slowly time-varying magnetic field is studied.
Abstract: We study the electro-magnetic feedback of the Advanced Virgo (AdV) Input Mirror Payload (IMP), in response to a slowly time-varying magnetic field. As the problem is not amenable to analytical solution, we employ and validate a finite element (FE) analysis approach. The FE model is built to represent as faithfully as possible the real object and it has been validated by comparison with experimental measurements. The intent is to estimate the induced currents and the magnetic field in the neighbourhood of the payload. The procedure found 21 equivalent electrical configurations that are compatible with the measurements. These have been used to compute the magnetic noise contribution to the total AdV strain noise. At the current stage of development AdV seems to be unaffected by magnetic noise, but we foresee a non-negligible coupling once AdV reaches the design sensitivity.

Journal ArticleDOI
TL;DR: The muon telescopes of the Extreme Energy Events (EEE) Project are made of three Multigap Resistive Plate Chambers (MRPCs) as discussed by the authors, which are installed in high schools with the aim to join research and teaching activities.
Abstract: The muon telescopes of the Extreme Energy Events (EEE) Project are made of three Multigap Resistive Plate Chambers (MRPC). The EEE array is composed, so far, of 59 telescopes and is organized in clusters and single telescope stations distributed all over the Italian territory. They are installed in High Schools with the aim to join research and teaching activities, by involving researchers, teachers and students in the construction, maintenance, data taking and data analysis. The unconventional working sites, mainly school buildings with non-controlled environmental parameters and heterogeneous maintenance conditions, are a unique test field for checking the robustness, the low-ageing features and the long-lasting performance of the MRPC technology for particle tracking and timing purposes. The measurements performed with the EEE array require excellent performance in terms of time and spatial resolution, efficiency, tracking capability and stability. The data from two recent coordinated data taking periods, named Run 2 and Run 3, have been used to measure these quantities and the results are described, together with a comparison with expectations and with the results from a beam test performed in 2006 at CERN.

Journal ArticleDOI
TL;DR: The Extreme Energy Events (EEE) experiment is the largest system in the world completely implemented with multigap resistive plate chambers (MRPCs) as discussed by the authors, consisting of a network of 59 muon telescopes, each made of 3 MRPCs, devoted to the study of secondary cosmic rays.
Abstract: The Extreme Energy Events (EEE) experiment is the largest system in the world completely implemented with Multigap Resistive Plate Chambers (MRPCs). Presently, it consists of a network of 59 muon telescopes, each made of 3 MRPCs, devoted to the study of secondary cosmic rays. Its stations, sometimes hundreds of kilometers apart, are synchronized at a few nanoseconds level via a clock signal delivered by the Global Positioning System. The data collected during centrally coordinated runs are sent to INFN CNAF, the largest center for scientific computing in Italy, where they are reconstructed and made available for analysis. Thanks to the on-line monitoring and data transmission, EEE operates as a single coordinated system spread over an area of about $3 \times 10^5$ km$^2$. In 2017, the EEE collaboration started an important upgrade program, aiming to extend the network with 20 additional stations, with the option to have more in the future. This implies the construction, testing and commissioning of 60 chambers, for a total detector surface of around 80 m$^2$. In this paper, aspects related to this challenging endeavor are covered, starting from the technological solutions chosen to build these state-of-the-art detectors, to the quality controls and the performance tests carried on.

Journal ArticleDOI
TL;DR: In this article, a set of tests on a real EEE telescope, with cosmic muons, are being performed at the CERN-01 Extreme Energy Events observatory, where several mixtures have been tested, measuring efficiency curves, charge distributions, streamer fractions and time resolutions.
Abstract: The Extreme Energy Events observatory is an extended muon telescope array, covering more than 10 degrees both in latitude and longitude. Its 59 muon telescopes are equipped with tracking detectors based on Multigap Resistive Plate Chamber technology with time resolution of the order of a few hundred picoseconds. The recent restrictions on greenhouse gases demand studies for new gas mixtures in compliance with the relative requirements. Tetrafluoropropene is one of the candidates for tetrafluoroethane substitution, since it is characterized by a Global Warming Power around 300 times lower than the gas mixtures used up to now. Several mixtures have been tested, measuring efficiency curves, charge distributions, streamer fractions and time resolutions. Results are presented for the whole set of mixtures and operating conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are being performed at the CERN-01 EEE telescope. The tests are focusing on identifying a mixture with good performance at the low rates typical of an EEE telescope.


Posted Content
TL;DR: In this article, the authors described the Advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during the O2 run of Advanced LIGO, leading to the first gravitational wave detections with the three-detector network.
Abstract: In August 2017, Advanced Virgo joined Advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the Advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications, this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction algorithm. A photon calibrator has been used to establish the sign of h(t) and to make an independent partial cross-check of the systematic uncertainties. The uncertainties reached for the latest h(t) version are 5.1% in amplitude, 40 mrad in phase and 20 microseconds in timing.