scispace - formally typeset
Search or ask a question

Showing papers by "Galina E. Pozmogova published in 2019"


Journal ArticleDOI
TL;DR: The emerging data on DNA G-quadruplexes (G4s) as epigenetic modulators are reviewed and integrated and multiple findings support the indirect participation of G4s in chromatin reshaping via interactions with remodeling-related transcription factors (TFs) or damage responders.
Abstract: Here, the emerging data on DNA G-quadruplexes (G4s) as epigenetic modulators are reviewed and integrated. This concept has appeared and evolved substantially in recent years. First, persistent G4s (e.g., those stabilized by exogenous ligands) were linked to the loss of the histone code. More recently, transient G4s (i.e., those formed upon replication or transcription and unfolded rapidly by helicases) were implicated in CpG island methylation maintenance and de novo CpG methylation control. The most recent data indicate that there are direct interactions between G4s and chromatin remodeling factors. Finally, multiple findings support the indirect participation of G4s in chromatin reshaping via interactions with remodeling-related transcription factors (TFs) or damage responders. Here, the links between the above processes are analyzed; also, how further elucidation of these processes may stimulate the progress of epigenetic therapy is discussed, and the remaining open questions are highlighted.

21 citations


Journal ArticleDOI
TL;DR: All dyes were particularly sensitive to a G4 structure with an additional duplex module (the thrombin-binding aptamer TBA31), presumably due to a distinctive binding mode (interaction with the junction between the two modules).

19 citations


Journal ArticleDOI
TL;DR: This review discusses the involvement of mutant mCAG-RNA in neurodegenerative processes in PolyQ diseases, which lead to serious, constantly progressing dysfunctions of the nervous and/or muscular systems.
Abstract: Polyglutamine diseases are rare, inherited neurodegenerative pathologies that arise as a result of expansion of trinucleotide CAG repeats in the coding segment of certain genes. This expansion leads to the appearance of mRNA with abnormally long repetitive CAG triplets (mCAG-RNA) and proteins with polyglutamine (PolyQ) tracts in the cells, which is why these pathologies are commonly termed polyglutamine diseases, or PolyQ diseases. To date, nine PolyQ diseases have been described: Huntington's disease, dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and six different types of spinocerebellar ataxia (SCA 1,2,3,6,7, and 17). PolyQ diseases lead to serious, constantly progressing dysfunctions of the nervous and/or muscular systems, and there currently exists no efficacious therapy for any of them. Recent studies have convincingly shown that mCAG-RNA can actively participate in the pathological process during the development of PolyQ diseases. Mutant RNA is involved in a wide range of molecular mechanisms, ultimately leading to disruption of the functions of transcription, splicing, translation, cytosol structure, RNA transport from the nucleus to the cytoplasm, and, finally, to neurodegeneration. This review discusses the involvement of mutant mCAG-RNA in neurodegenerative processes in PolyQ diseases.

5 citations


Journal ArticleDOI
TL;DR: The concept of i-motifs as possible genomic regulatory elements and the future design of rapid-response pH probes based on such structures is encouraged and counterplay between the effects of modifications on i-Motif stability and their effects on kinetics should be taken into account in the design of pH sensors.
Abstract: I-motif structures, adopted by cytosine-rich DNA strands, have attracted considerable interest as possible regulatory elements in genomes. Applied science exploits the advantages of i-motif stabilization under acidic conditions: i-motif-based pH sensors and other biocompatible nanodevices are being developed. Two key characteristics of i-motifs as core elements of nanodevices, i.e., their stability under physiological conditions and folding/unfolding rates, still need to be improved. We have previously reported a phenoxazine derivative (i-clamp) that enhances the thermal stability of the i-motif and shifts the pH transition point closer to physiological values. Here, we performed i-clamp guanidinylation to further explore the prospects of clamp-like modifications in i-motif fine-tuning. Based on molecular modeling data, we concluded that clamp guanidinylation facilitated interstrand interactions in an i-motif core and ultimately stabilized the i-motif structure. We tested the effects of guanidino-i-clamp insertions on the thermal stabilities of genomic and model i-motifs. We also investigated the folding/unfolding kinetics of native and modified i-motifs under moderate, physiologically relevant pH alterations. We demonstrated fast folding/unfolding of native genomic and model i-motifs in response to pH stimuli. This finding supports the concept of i-motifs as possible genomic regulatory elements and encourages the future design of rapid-response pH probes based on such structures. Incorporation of guanidino-i-clamp residues at/near the 5′-terminus of i-motifs dramatically decreased the apparent unfolding rates and increased the thermal stabilities of the structures. This counterplay between the effects of modifications on i-motif stability and their effects on kinetics should be taken into account in the design of pH sensors.

5 citations