scispace - formally typeset
Search or ask a question

Showing papers by "Gautam Basu published in 2015"


Journal ArticleDOI
18 Aug 2015-ACS Nano
TL;DR: Dec-mediated presentation offers a robust, modular means of decorating the exposed exterior of the P22 capsid in order to further orchestrate responses to internally functionalized VLPs within biological systems.
Abstract: Viruses use spatial control of constituent proteins as a means of manipulating and evading host immune systems. Similarly, precise spatial control of proteins encapsulated or presented on designed nanoparticles has the potential to biomimetically amplify or shield biological interactions. Previously, we have shown the ability to encapsulate a wide range of guest proteins within the virus-like particle (VLP) from Salmonella typhimurium bacteriophage P22, including antigenic proteins from human pathogens such as influenza. Expanding on this robust encapsulation strategy, we have used the trimeric decoration protein (Dec) from bacteriophage L as a means of controlled exterior presentation on the mature P22 VLP, to which it binds with high affinity. Through genetic fusion to the C-terminus of the Dec protein, either the 17 kDa soluble region of murine CD40L or a minimal peptide designed from the binding region of the "self-marker" CD47 was independently presented on the P22 VLP capsid exterior. Both candidates retained function when presented as a Dec-fusion. Binding of the Dec domain to the P22 capsid was minimally changed across designed constructs, as measured by surface plasmon resonance, demonstrating the broad utility of this presentation strategy. Dec-mediated presentation offers a robust, modular means of decorating the exposed exterior of the P22 capsid in order to further orchestrate responses to internally functionalized VLPs within biological systems.

63 citations


Journal ArticleDOI
TL;DR: It is shown that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GLURS (GluRS2).
Abstract: The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNAGln via interaction with GatCAB, whereas its role in tRNAGlu interaction may be a consequence of the presence of pZBD.

5 citations


Journal ArticleDOI
01 Sep 2015-Proteins
TL;DR: It is shown that a single geometric parameter in crystal structures of protein–protein complexes, the angle between the electric dipole of one subunit and the partner‐generated electric field at the same subunit, linearly correlates with experimentally determined protein– protein association rates.
Abstract: Understanding factors that drive protein–protein association is of fundamental importance. We show that a single geometric parameter in crystal structures of protein–protein complexes, the angle between the electric dipole of one subunit and the partner-generated electric field at the same subunit, linearly correlates with experimentally determined protein–protein association rates. Imprint of a dynamic kinetic process in a single static geometric parameter, associated with mutual electrostatic orientation of subunits in protein–protein complexes, is elegant and demonstrates the universality of electrostatic steering in attenuating protein–protein association rates. That the essence of a complex phenomenon could be captured by properties of the final crystal structure of the complex implies that the electrostatic orientations of protein subunits in crystal structures and the associated transition states are nearly identical. Further, the cosine of the angle, alone, is shown to be sufficient in predicting association rate constants, with accuracies comparable to currently available predictors that use more intricate methodologies. Our results offer mechanistic insights and could be useful in development of coarse-grained models. Proteins 2015; 83:1557–1562. © 2015 Wiley Periodicals, Inc.

2 citations