scispace - formally typeset
Search or ask a question

Showing papers by "George Fountos published in 2017"


Journal ArticleDOI
TL;DR: A dual energy x-ray method was developed and statistical significant difference was observed between the different types of minerals when calcification thicknesses were 300 [Formula: see text] or higher.
Abstract: Calcifications are products of mineralization whose presence is usually associated with pathological conditions. The minerals mostly seen in several diseases are calcium oxalate (CaC2O4), calcium carbonate (CaCO3) and hydroxyapatite (HAp). Up to date, there is no in vivo method that could discriminate between minerals. To this aim, a dual energy x-ray method was developed in the present study. An analytical model was implemented for the determination of the Calcium/Phosphorus mass ratio ([Formula: see text]). The simulation was carried out using monoenergetic and polyenergetic x-rays and various calcification thicknesses (100-1000 [Formula: see text]) and types (CaC2O4, CaCO3, HAp). The experimental evaluation of the method was performed using the optimized irradiation conditions obtained from the simulation study. X-ray tubes, combined with energy dispersive and energy integrating (imaging) detectors, were used for the determination of the [Formula: see text] in phantoms of different mineral types and thicknesses. Based on the results of the experimental procedure, statistical significant difference was observed between the different types of minerals when calcification thicknesses were 300 [Formula: see text] or higher.

27 citations


Journal ArticleDOI
TL;DR: The detective quantum efficiency (DQE) is introduced for the image quality assessment of positron emission tomography (PET) scanners and can be useful in the quality control and in the further development of PET and SPECT scanners though GATE simulations.

17 citations


Journal ArticleDOI
TL;DR: The proposed dual energy (DE) method could potentially improve calcification visibility in DE breast calcification imaging.
Abstract: The aim of this work was to present an experimental dual energy (DE) method for the visualization of microcalcifications ( μ C s ). A modified radiographic X-ray tube combined with a high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. A 40/70 kV spectral combination was filtered with 100 μ m cadmium (Cd) and 1000 μ m copper (Cu) for the low/high-energy combination. Homogenous and inhomogeneous breast phantoms and two calcification phantoms were constructed with various calcification thicknesses, ranging from 16 to 152 μ m . Contrast-to-noise ratio (CNR) was calculated from the DE subtracted images for various entrance surface doses. A calcification thickness of 152 μ m was visible, with mean glandular doses (MGD) in the acceptable levels (below 3 mGy). Additional post-processing on the DE images of the inhomogeneous breast phantom resulted in a minimum visible calcification thickness of 93 μ m (MGD=1.62 mGy). The proposed DE method could potentially improve calcification visibility in DE breast calcification imaging.

16 citations


Journal ArticleDOI
TL;DR: In this paper, composite ZnCdSeS quantum dot (QD) flexible films were prepared with concentrations 10mg/mL and 20 mg/mL by homogenously diluting dry powder QD samples in toluene.
Abstract: The aim of this work was to prepare composite ZnCdSeS quantum dot (QD) flexible films and to examine their optical properties under ultraviolet excitation. PMMA/QD ZnCdSeS composite films, with emission covering the visual spectrum (480–630 nm) were prepared with concentrations 10 mg/mL and 20 mg/mL by homogenously diluting dry powder QD samples in toluene and subsequently mixing with a PMMA/MMA polymer solution to the final ZnCdSeS/Toluene mixture. Scanning electron microscopy (SEM) images of the produced films were obtained. The ZnCdSeS films were excited by ultraviolet light of varying intensities and the spectral matching with various optical detectors was estimated.

13 citations


Journal ArticleDOI
TL;DR: Initial results showed that the DE images were directly comparable with the mammographic image and similar or even increased calcification information was identified, with mean glandular dose values at acceptable levels.
Abstract: The purpose of this study was to evaluate a dual energy method, developed by our group, on a breast cancer specimen. A modified radiographic X-ray tube combined with a high resolution complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. A 40/70 kV spectral combination was filtered with 100 μm cadmium (Cd) and 1000 μm copper (Cu) for the low/high-energy combination. Dual energy images were obtained from a formalin-fixed breast cancer specimen for various entrance surface doses (ESD). Initial results showed that the DE images were directly comparable with the mammographic image and similar or even increased calcification information was identified, with mean glandular dose values at acceptable levels.

9 citations


Journal ArticleDOI
TL;DR: In this article, a comparative evaluation of luminescence efficiency of Lu 2 O 3 :Eu phosphors screens, in transmission mode, prepared with different grain shape and size, and manufactured by the sedimentation method was provided.
Abstract: The aim of this work is to provide a comparative evaluation of luminescence efficiency of Lu 2 O 3 :Eu phosphors screens, in transmission mode, prepared with different grain shape and size, and manufactured by the sedimentation method. More specific, three screens were prepared with spherical grains of size 50 nm, 200 nm and 5 μm. Furthermore, two screens with rod-like shape grains and size of 500 nm and 1–8 μm. The behavior of Absolute Luminescence Efficiency (AE) at low energy X-rays (50 kVp) appeared to differ with the grains size and shape. Furthermore the rod-like grain screens appeared with reduced luminescence efficiency values.

7 citations


Journal ArticleDOI
01 Nov 2017
TL;DR: In this article, a 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor.
Abstract: The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.

6 citations


Journal ArticleDOI
01 Nov 2017
TL;DR: In this paper, the authors examined the scintillation properties of Manganese Doped Zinc Sulfide (ZnS:Mn 2+) Quantum Dot (QDs) nanocrystals under UV and X-ray irradiation.
Abstract: Quantum Dots are semiconductor nanocrystals, with their optical properties controlled by their size, shape and material composition. The aim of the present study is to examine the scintillation properties of Manganese Doped Zinc Sulfide (ZnS:Mn 2+) Quantum Dot (QDs) nanocrystals under UV and X-ray irradiation. ZnS:Mn 2+ Quantum Dots, with typical diameter of ZnS dots of 13-20nm (also called scintillation QDs, stQDs), were developed and acquired by Mesolight Inc. The initial stQD sample was a solution of 75mg of ZnS:Mn 2+ dissolved in 100μL of Toluene, having a concentration of 75% w/v. Emission characteristics under UV and X-Ray excitation were examined. Two ultraviolet sources were incorporated (315 nm and 365 nm) as well as a medical X-ray tube with tube voltage from 50 to 130 kVp. Parameters such as Energy Quantum Efficiency under UV excitation and Luminescence Efficiency-LE (light energy flux over exposure rate) under X-ray excitation were examined. Luminescence Efficiency (LE) of ZnS:Mn 2+ was higher than that exhibited by previously examined QDs, (ZnCdSeS:ZnS and ZnCuInS:ZnS). The ability of ZnS:Mn 2+ to transform UV photons energy into optical photons energy, tends to increase while the incident UV wavelength decreases. Energy Quantum Efficiency of the sample exhibited a 6% increase when exposed to 315nm UV light compared to 365 nm. The emission spectrum of the stQDs, exhibited a narrow peak (~585nm) in the yellow range.

5 citations



Journal ArticleDOI
01 Nov 2017
TL;DR: In this article, the authors proposed a method to enhance the stability of polymethyl methacrylate (PMMA) matrix by incorporating phosphor particles into a PMMA matrix, which shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range.
Abstract: Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

3 citations


Journal ArticleDOI
01 Nov 2017
TL;DR: In this article, the influence of grain shape and size on spatial resolution of various Lu2O3:Eu phosphor screens was investigated using the sedimentation method, and it was found that the effect of the grain shape on imaging performance was more crucial than the grain size.
Abstract: The influence of the grain shape and size on spatial resolution (ranging from nano to micro scale) of various Lu2O3:Eu phosphor screens was investigated. All screens were prepared using the sedimentation method. Three screens were prepared with spherical grains and sizes 50 nm, 200 nm and 5 μm, whilst two screens with rod-like shape grains and sizes 500 nm and 1-8 μm. All screens were coupled to a high resolution CMOS digital imaging sensor (Remote RadEye HR) consisting of 1200 x 1600 pixels with 22.5 μm pixel pitch. Experiments were performed under radiographic conditions, using 70 kVp tube voltage and 63 mAs tube load. Spatial resolution was assessed utilizing the Modulation Transfer Function (MTF). It was found that the influence of the grains shape on imaging performance was more crucial than the grain size. The rod-like grains showed very poor spatial resolution. The influence of grains size between 50 nm 200 nm and 5 μm was negligible on MTF values.


Journal ArticleDOI
01 Nov 2017
TL;DR: In this article, four terbium-activated Gd2O2S (GOS) powder screens with different thicknesses (1049 mg/cm2, 425.41 mg/mm2, 313 mg/ cm2 and 187.36 mg/m2) were studied to investigate possible applications for general radiology detectors.
Abstract: Rare earth activators are impurities added in the phosphor material to enhance probability of visible photon emission during the luminescence process. The main activators employed are rare earth trivalent ions such as Ce+3, Tb+3, Pr3+ and Eu+3. In this work, four terbium-activated Gd2O2S (GOS) powder screens with different thicknesses (1049 mg/cm2, 425.41 mg/cm2, 313 mg/cm2 and 187.36 mg/cm2) and one europium-activated GOS powder screen (232.18 mg/cm2) were studied to investigate possible applications for general radiology detectors. Results presented relevant differences in crystallinity between the GOS:Tb doped screens and GOS:Eu screens in respect to the dopant agent present. The AE (Absolute efficiency) was found to rise (i) with the increase of the X-ray tube voltage with the highest peaking at 110kVp and (ii) with the decrease of the thickness among the four GOS:Tb. Comparing similar thickness values, the europium-activated powder screen showed lower AE than the corresponding terbium-activated.


Journal ArticleDOI
01 Nov 2017
TL;DR: The Detective Quantum Efficiency in single photon emission computed tomography (SPECT) systems using a flood source is novel and easy to implement, requiring materials commonly found in clinical practice and can be useful in the quality control of SPECT scanners.
Abstract: The purpose of this work was to introduce the Detective Quantum Efficiency (DQE) in single photon emission computed tomography (SPECT) systems using a flood source. A Tc-99m-based flood source (Eγ = 140 keV) consisting of a radiopharmaceutical solution of dithiothreitol (DTT, 10-3 M)/Tc-99m(III)-DMSA, 40 mCi/40 ml bound to the grains of an Agfa MammoRay HDR Medical X-ray film) was prepared in laboratory. The source was placed between two PMMA blocks and images were obtained by using the brain tomographic acquisition protocol (DatScan-brain). The Modulation Transfer Function (MTF) was evaluated using the Iterative 2D algorithm. All imaging experiments were performed in a Siemens e-Cam gamma camera. The Normalized Noise Power spectra (NNPS) were obtained from the sagittal views of the source. The higher MTF values were obtained for the Flash Iterative 2D with 24 iterations and 20 subsets. The noise levels of the SPECT reconstructed images, in terms of the NNPS, were found to increase as the number of iterations increase. The behavior of the DQE was influenced by both MTF and NNPS. As the number of iterations was increased, higher MTF values were obtained, however with a parallel, increase of magnitude in image noise, as depicted from the NNPS results. DQE values, which were influenced by both MTF and NNPS, were found higher when the number of iterations results in resolution saturation. The method presented here is novel and easy to implement, requiring materials commonly found in clinical practice and can be useful in the quality control of SPECT scanners.