scispace - formally typeset
Search or ask a question

Showing papers by "George Paxinos published in 2002"


Journal ArticleDOI
TL;DR: The consistency in the number of IGP neurons across all species, combined with the reduction in SNND neurons in humans, suggests a greater emphasis on output pathways through the IGP and that there are proportionally more STh and EGP neurons in human.
Abstract: This study compares the basal ganglia of rats, marmosets, macaques, baboons, and humans. It uses established protocols to estimate the volume and number of neurons within the output nuclei (internal globus pallidus, IGP; and nondopaminergic substantia nigra, SNND), two internal relay and modulating nuclei (subthalamic nucleus, STh; and external globus pallidus, EGP), and a modulator of the striatum (dopaminergic substantia nigra, SND). Nuclear boundaries were defined by using immunohistochemistry for striatal afferents. Total numbers of Nissl-stained and parvalbumin-immunoreactive neurons were calculated by using the fractionator technique. Comparisons between species were standardized relative to brain mass (rats < marmosets < macaques < baboons < humans). The EGP consistently had more neurons relative to the IGP, STh, and SND, which had similar neuronal numbers within each species. The SNND had proportionally more neurons in rats than in primates (especially humans). The distribution of SND neurons varied substantially between rats and primates (very few ventrally located neurons in rats) with humans containing fewer SND neurons than other primates. The reduction in SND neurons in humans suggests less dopaminergic regulation of the basal ganglia system compared with other species. The consistency in the number of IGP neurons across all species, combined with the reduction in SNND neurons in humans, suggests a greater emphasis on output pathways through the IGP and that there are proportionally more STh and EGP neurons in humans.

277 citations


Journal ArticleDOI
TL;DR: The organization of the human hypothalamus was studied in 33 brains aged from 9 weeks of gestation to newborn, using immunohistochemistry for parvalbumin, calbindin,calretinin, neuropeptide Y, neurophysin, growth‐associated protein (GAP)‐43, synaptophysin, and the glycoconjugate 3‐fucosyl‐ N‐acetyl‐lactosamine.
Abstract: The organization of the human hypothalamus was studied in 33 brains aged from 9 weeks of gestation (w.g.) to newborn, using immunohistochemistry for parvalbumin, calbindin, calretinin, neuropeptide Y, neurophysin, growth-associated protein (GAP)-43, synaptophysin, and the glycoconjugate 3-fucosyl- N-acetyl-lactosamine. Developmental stages are described in relation to obstetric trimesters. The first trimester (morphogenetic periods 9-10 w.g. and 11-14 w.g.) is characterized by differentiating structures of the lateral hypothalamic zone, which give rise to the lateral hypothalamus (LH) and posterior hypothalamus. The PeF differentiates at 18 w.g. from LH neurons, which remain anchored in the perifornical position, whereas most of the LH cells are displaced laterally. A transient supramamillary nucleus was apparent at 14 w.g. but not after 16 w.g. As the ventromedial nucleus differentiated at 13-16 w.g., three principal parts, the ventrolateral part, the dorsomedial part, and the shell, were revealed by distribution of calbindin, calretinin, and GAP43 immunoreactivity. The second trimester (morphogenetic periods 15-17 w.g., 18-23 w.g., and 24-33 w.g.) is characterized by differentiation of the hypothalamic core, in which calbindin- positive neurons revealed the medial preoptic nucleus at 16 w.g. abutted laterally by the intermediate nucleus. The dorsomedial nucleus was clearly defined at 10 w.g. and consisted of compact and diffuse parts, an organization that was lost after 15 w.g. Differentiation of the medial mamillary body into lateral and medial was seen at 13-16 w.g. Late second trimester was marked by differentiation of periventricular zone structures, including suprachiasmatic, arcuate, and paraventricular nuclei. The subnuclear differentiation of these nuclei extends into the third trimester. The use of chemoarchitecture in the human fetus permitted the identification of interspecies nuclei homologies, which otherwise remain concealed in the cytoarchitecture.

108 citations