scispace - formally typeset
Search or ask a question

Showing papers by "Govindasamy Mugesh published in 2021"


Journal ArticleDOI
TL;DR: This work shows for the first time that a cerium vanadate (CeVO 4 ) nanozyme can substitute the function of superoxide dismutase 1 and 2 in the neuronal cells even when the natural enzyme is down-regulated by specific gene silencing.
Abstract: Nanoparticles that functionally mimic the activity of metal-containing enzymes (metallo-nanozymes) are of therapeutic importance for treating various diseases. However, it is still not clear whether such nanozymes can completely substitute the function of natural enzymes in living cells. In this work, we show for the first time that a cerium vanadate (CeVO4 ) nanozyme can substitute the function of superoxide dismutase 1 and 2 (SOD1 and SOD2) in the neuronal cells even when the natural enzyme is down-regulated by specific gene silencing. The nanozyme prevents the mitochondrial damage in SOD1- and SOD2-depleted cells by regulating the superoxide levels and restores the physiological levels of the anti-apoptotic Bcl-2 family proteins. Furthermore, the nanozyme effectively prevents the mitochondrial depolarization, leading to a significant improvement in the cellular levels of ATP under oxidative stress.

64 citations


Journal ArticleDOI
TL;DR: In this paper, vanadium pentoxide (V2 O5 ) nanosheets functionally mimic natural glutathione peroxidase activity to mitigate ROS associated with HIV-1 infection without adversely affecting cellular physiology.
Abstract: Reactive oxygen species (ROS) regulates the replication of human immunodeficiency virus (HIV-1) during infection. However, the application of this knowledge to develop therapeutic strategies remained unsuccessful due to the harmful consequences of manipulating cellular antioxidant systems. Here, we show that vanadium pentoxide (V2 O5 ) nanosheets functionally mimic natural glutathione peroxidase activity to mitigate ROS associated with HIV-1 infection without adversely affecting cellular physiology. Using genetic reporters of glutathione redox potential and hydrogen peroxide, we showed that V2 O5 nanosheets catalyze ROS neutralization in HIV-1-infected cells and uniformly block viral reactivation and replication. Mechanistically, V2 O5 nanosheets suppressed HIV-1 by affecting the expression of pathways coordinating redox balance, virus transactivation (e.g., NF-κB), inflammation, and apoptosis. Importantly, a combination of V2 O5 nanosheets with a pharmacological inhibitor of NF-κB (BAY11-7082) abrogated reactivation of HIV-1. Lastly, V2 O5 nanosheets inhibit viral reactivation upon prostratin stimulation of latently infected CD4+ T cells from HIV-infected patients receiving suppressive antiretroviral therapy. Our data successfully revealed the usefulness of V2 O5 nanosheets against HIV and suggested nanozymes as future platforms to develop interventions against infectious diseases.

15 citations


Journal ArticleDOI
23 Sep 2021-Oncogene
TL;DR: The enzyme iodothyronine deiodinase type 3 (DIO3) contributes to cancer proliferation by inactivating the tumor-suppressive actions of thyroid hormone (T3) as discussed by the authors.
Abstract: The enzyme iodothyronine deiodinase type 3 (DIO3) contributes to cancer proliferation by inactivating the tumor-suppressive actions of thyroid hormone (T3). We recently established DIO3 involvement in the progression of high-grade serous ovarian cancer (HGSOC). Here we provide a link between high DIO3 expression and lower survival in patients, similar to common disease markers such as Ki67, PAX8, CA-125, and CCNE1. These observations suggest that DIO3 is a logical target for inhibition. Using a DIO3 mimic, we developed original DIO3 inhibitors that contain a core of dibromomaleic anhydride (DBRMD) as scaffold. Two compounds, PBENZ-DBRMD and ITYR-DBRMD, demonstrated attenuated cell counts, induction in apoptosis, and a reduction in cell proliferation in DIO3-positive HGSOC cells (OVCAR3 and KURAMOCHI), but not in DIO3-negative normal ovary cells (CHOK1) and OVCAR3 depleted for DIO3 or its substrate, T3. Potent tumor inhibition with a high safety profile was further established in HGSOC xenograft model, with no effect in DIO3-depleted tumors. The antitumor effects are mediated by downregulation in an array of pro-cancerous proteins, the majority of which known to be repressed by T3. To conclude, using small molecules that specifically target the DIO3 enzyme we present a new treatment paradigm for ovarian cancer and potentially other DIO3-dependent malignancies.

5 citations