scispace - formally typeset
Search or ask a question

Showing papers by "Herman Chernoff published in 1976"


Journal ArticleDOI
TL;DR: In this article, a stochastic process starting at a constant point (y) is considered and the optimal stopping procedure is to stop as soon as the payoff is reached and the number of steps left to be taken is known.
Abstract: Let $Y_t$ be a stochastic process starting at $y$ which changes by i.i.d. dichotomous increments $X_t$ with mean 0 and variance 1. The cost of proceeding one step is one and the payoff is zero unless $n$ steps are taken and the final value $\hat{Y}$ of $Y_t$ is negative in which case the payoff is $\hat{Y}^2$. The optimal procedure consists of stopping as soon as $Y_t \geq \tilde{y}_m$ where $m$ is the number of steps left to be taken. The limit of $\tilde{y}_m$ as $m \rightarrow \infty$ is desired as a function of $p = P(X_t < 0)$. This limit $\tilde{y}$ is evaluated for $p$ rational and proved to be continuous in $p$. One can use $\tilde{y}$ to relate the solution of optimal stopping problems involving a Wiener process to those involving certain discrete-time discrete-process stopping problems. Thus $\tilde{y}$ is useful in calculating simple numerical approximations to solutions of various stopping problems.

15 citations