scispace - formally typeset
Search or ask a question

Showing papers by "Hossein Sojoudi published in 2023"


Journal ArticleDOI
28 Jan 2023-Coatings
TL;DR: In this article , the impact of symmetry on evaporation triggered top-gathering of micropillars was studied numerically using a COMSOL multiphysics simulation package.
Abstract: High-aspect-ratio (HAR) micropillar arrays offer a wide range of applications in micro-contact printing, switchable transparent optical windows, superhydrophobic surfaces, mechanical sensors, and actuators, due to their properties such as large surface area and excellent mechanical compliance. However, owing to their high aspect ratio, these microstructures are prone to lateral deflection by elastocapillary forces in liquid environments, which is known as top-gathering, limiting their manufacturing processes and applications. Here, the impact of symmetry on evaporation triggered top-gathering of micropillars was studied numerically. The initiation of the micropillar deflection due to capillary forces under varying force distributions was simulated using a COMSOL Multiphysics simulation package. The simulation was carried out for the configurations of two, four, and an array of micropillars. For the four micropillar configuration, a new equation was suggested for calculating the micropillar deflection due to elastocapillary forces, using force distributions around the micropillars. The suggested equation was verified by comparison with the experimental observations. The effect of droplet evaporation on deflection/top-gathering of micropillars was also investigated. It was found that initiation of deflection is due to asymmetry at the rim of the droplet, generating domino-like deflection of the other micropillars. This study provides a new equation/criterion for estimating deflection of the micropillars, suggesting array designs that are resistant to such deflections when interacting with liquids.

7 citations


Journal ArticleDOI
TL;DR: In this paper , a contactless emulsification method using corona discharge is presented, which is facile, contactless, and energy-efficient for the continuous formation of W/O emulsions.
Abstract: A contactless emulsification method is presented using corona discharge. The corona discharge forms using a pin-to-plate configuration, creating a non-uniform electric field. This results in a simultaneous electrohydrodynamic (EHD) pumping of silicone oil and an electroconvection of water droplets that accelerate and submerge inside the oil, leading to a continuous water-in-oil (W/O) emulsion formation process. The impact of the oil viscosity and corona generating AC and DC electric fields (i.e., voltage and frequency) on the characteristics of the emulsions is studied. The emulsification power consumption using the AC and DC electric fields is calculated and compared to traditional emulsion formation methods. While using the DC electric field results in the formation of uniform emulsions, the AC electric field is readily available and uses less power for the emulsification. This is facile, contactless, and energy-efficient for the continuous formation of W/O emulsions.