scispace - formally typeset
Search or ask a question
JournalISSN: 2079-6412

Coatings 

Multidisciplinary Digital Publishing Institute
About: Coatings is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Chemistry & Coating. It has an ISSN identifier of 2079-6412. It is also open access. Over the lifetime, 3068 publications have been published receiving 4449 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
23 Mar 2022-Coatings
TL;DR: In this paper , the effects of governing parameters such as magnetic field, Grashof number, the ratio of heights, angle of inclination, and ratio of viscosities on velocity and temperature were investigated, and the results are presented graphically in this paper.
Abstract: In this study, we investigated multilayer coatings fully developed with steady Newtonian and non-Newtonian fluids through parallel inclined plates. The channel was rotating about the y-axis with angular velocity Ω. The channel contained three regions; Region 1 and Region 3 were filled with Newtonian fluid, while Region 2 had Jeffrey fluid through a porous medium. The governing equations were formed by using Navier stokes and energy equations. The equations were coupled and were non-linear due to the involvement of Darcy’s dissipation terms. The systems of equations for Region 1 and Region 3 were solved analytically, while the equations of Region 2 were solved by using the regular perturbation method. The effects of governing parameters such as magnetic field, Grashof number, the ratio of heights, angle of inclination, and ratio of viscosities on velocity and temperature were investigated, and the results are presented graphically in this paper. It is noted that the increase in buoyancy force incorporated through the Grashof number and the angle of inclination enhanced the axial and transverse velocities and the temperature for the three layers. We found that the Nusselt number increases by increasing the couple stress parameter and magnetic field parameters, and skin friction decreases at the lower plate. The main observation is that temperature and both velocity profiles increased in Region 2 with the increase in the Jeffrey parameter.

37 citations

Journal ArticleDOI
15 Feb 2022-Coatings
TL;DR: In this paper , the authors present a review of recent developments in perovskite solar cells' preparation and fabrication methods, the associated advantages and disadvantages, and methods for improving the efficiency of large-area perovskiite films for commercial application.
Abstract: The recent rapid development in perovskite solar cells (PSCs) has led to significant research interest due to their notable photovoltaic performance, currently exceeding 25% power conversion efficiency for small-area PSCs. The materials used to fabricate PSCs dominate the current photovoltaic market, especially with the rapid increase in efficiency and performance. The present work reviews recent developments in PSCs’ preparation and fabrication methods, the associated advantages and disadvantages, and methods for improving the efficiency of large-area perovskite films for commercial application. The work is structured in three parts. First is a brief overview of large-area PSCs, followed by a discussion of the preparation methods and methods to improve PSC efficiency, quality, and stability. Envisioned future perspectives on the synthesis and commercialization of large-area PSCs are discussed last. Most of the growth in commercial PSC applications is likely to be in building integrated photovoltaics and electric vehicle battery charging solutions. This review concludes that blade coating, slot-die coating, and ink-jet printing carry the highest potential for the scalable manufacture of large-area PSCs with moderate-to-high PCEs. More research and development are key to improving PSC stability and, in the long-term, closing the chasm in lifespan between PSCs and conventional photovoltaic cells.

29 citations

Journal ArticleDOI
03 Oct 2022-Coatings
TL;DR: In this article , the significance of surface modification of biomedical implants by enlightening numerous significant physical surface modifications, including ultrasonic nanocrystal surface modification, thermal spraying, ion implantation, glow discharge plasma, electrophoretic deposition, and physical vapor deposition.
Abstract: Metallic materials are among the most crucial engineering materials widely utilized as biomaterials owing to their significant thermal conductivity, mechanical characteristics, and biocompatibility. Although these metallic biomedical implants, such as stainless steel, gold, silver, dental amalgams, Co-Cr, and Ti alloys, are generally used for bone tissue regeneration and repairing bodily tissue, the need for innovative technologies is required owing to the sensitivity of medical applications and to avoid any potential harmful reactions, thereby improving the implant to bone integration and prohibiting infection lea by corrosion and excessive stress. Taking this into consideration, several research and developments in biomaterial surface modification are geared toward resolving these issues in bone-related medical therapies/implants offering a substantial influence on cell adherence, increasing the longevity of the implant and rejuvenation along with the expansion in cell and molecular biology expertise. The primary objective of this review is to reaffirm the significance of surface modification of biomedical implants by enlightening numerous significant physical surface modifications, including ultrasonic nanocrystal surface modification, thermal spraying, ion implantation, glow discharge plasma, electrophoretic deposition, and physical vapor deposition. Furthermore, we also focused on the characteristics of some commonly used biomedical alloys, such as stainless steel, Co-Cr, and Ti alloys.

24 citations

Journal ArticleDOI
28 Feb 2023-Coatings
TL;DR: In this paper , the authors proposed and optimized an ultra-wideband solar absorber based on Ti-Al2O3 cross elliptical disk arrays to obtain the ultrawideband absorption of solar energy.
Abstract: Perfect metamaterial absorbers have attracted researchers’ attention in solar energy harvesting and utilization. An ideal solar absorber should provide high absorption, be ultra-wideband, and be insensitive to polarization and incident angles, which brings challenges to research. In this paper, we proposed and optimized an ultra-wideband solar absorber based on Ti-Al2O3 cross elliptical disk arrays to obtain the ultra-wideband absorption of solar energy. The addition of a cavity greatly improves the energy-absorbing effect in the operating band, which has research value. The absorption spectrum and field distribution were analyzed by the finite difference time domain method. For the physical mechanism, the electric and magnetic field distribution indicates that ultra-wideband absorption is caused by propagation surface plasmon resonance (SPR), localized SPR and Fabry–Perot (F-P) resonance excited between Ti and Al2O3 disks. The results demonstrate that the absorption bandwidth with the absorption rate beyond 90% reaches 1380 nm (385–1765 nm), and the average absorption reaches an astonishing 98.78%. The absorption bandwidth matches the main radiation bandwidth of the solar energy, which is approximately 295–2500 nm according to the data from the literature, and the total thickness of the structure is only 445 nm. Moreover, the ultra-wideband solar absorber is insensitive to the polarization angle and oblique incidence angle. The proposed ultra-wideband solar absorber has research and application value in solar energy harvesting, photothermal conversion and utilization.

22 citations

Journal ArticleDOI
03 Jan 2023-Coatings
TL;DR: Wang et al. as discussed by the authors proposed a combination of rubber aggregate and permeable concrete, and the mix ratio of rubber permeability concrete mixture material is designed, which is applied to the engineering of pavement in Hunan Province, and its comprehensive pavement performance is analyzed and evaluated.
Abstract: Permeable concrete is a new type of pavement material, which can effectively improve the urban flood discharge system, and is of great significance to the construction of sponge city. In order to optimize the use effect of permeable concrete and improve the application value of permeable concrete in permeable road engineering, the combination of rubber aggregate and permeable concrete is proposed, and the mix ratio of rubber permeable concrete mixture material is designed, which is applied to the engineering of pavement in Hunan Province, and its comprehensive pavement performance is analyzed and evaluated. The results show that the rubber permeable concrete has the best performance when the water cement ratio is 0.3, the designed porosity is 15%, the rubber particle size is 16 mesh, the rubber content is 15% and the coarse aggregate ratio is 4:6. The removal rates of suspended solids and metal pollutants are 0.65 and 0.72, respectively, which are increased by 0.23 and 0.19, respectively, compared with ordinary permeable concrete. This shows that rubber permeable concrete improves the ecological benefits of permeable concrete pavement, gives full play to the economic benefits of waste rubber products, reduces the construction cost of permeable concrete pavement, and provides assistance for promoting the construction of sponge city.

22 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20231,190
20222,028