scispace - formally typeset
Search or ask a question

Showing papers by "Hunter C. Champion published in 2014"


Journal ArticleDOI
TL;DR: The goal of the present study was to elucidate the structural and biomechanical adaptations of RV myocardium subjected to sustained pressure overload in a rat model and further the understanding of the underlying adaptive and maladaptive remodeling mechanisms.
Abstract: Right ventricular (RV) failure in response to pulmonary hypertension (PH) is a severe disease that remains poorly understood. PH-induced pressure overload leads to changes in the RV free wall (RVFW) that eventually results in RV failure. While the development of computational models can benefit our understanding of the onset and progression of PH-induced pressure overload, detailed knowledge of the underlying structural and biomechanical events remains limited. The goal of the present study was to elucidate the structural and biomechanical adaptations of RV myocardium subjected to sustained pressure overload in a rat model. Hemodynamically confirmed severe chronic RV pressure overload was induced in Sprague–Dawley rats via pulmonary artery banding. Extensive tissue-level biaxial mechanical and histomorphological analyses were conducted to assess the remodeling response in the RV free wall. Simultaneous myofiber hypertrophy and longitudinal re-orientation of myo- and collagen fibers were observed, with both fiber types becoming more highly aligned. Transmural myo- and collagen fiber orientations were co-aligned in both the normal and diseased state. The overall tissue stiffness increased, with larger increases in longitudinal vs. circumferential stiffness. The latter was attributed to longitudinal fiber re-orientation, which increased the degree of anisotropy. Increased mechanical coupling between the two axes was attributed to the increased fiber alignment. Interestingly, estimated myofiber stiffness increased while the collagen fiber stiffness remained unchanged. The increased myofiber stiffness was consistent with clinical results showing titin-associated increased sarcomeric stiffening observed in PH patients. These results further our understanding of the underlying adaptive and maladaptive remodeling mechanisms and may lead to improved techniques for prognosis, diagnosis, and treatment for PH.

77 citations


Journal ArticleDOI
TL;DR: The findings of low levels of platelet activation and plfHb suggest adequate blood biocompatibility of the integrated CentriMag–Novalung circuit use for short-term support in a model of PH.
Abstract: Extracorporeal membrane oxygenation (ECMO) is rarely used in patients with severe pulmonary hypertension (PH) as a bridge to lung transplantation. In this study, we assess the blood biocompatibility of the integrated CentriMag-Novalung ECMO system (venoarterial) in an acute model of PH. Severe PH (≥2/3 systemic) was induced in eight sheep through progressive ligation of the main pulmonary artery. System performance, platelet activation, thromboelastography (TEG) parameters, fibrinogen, plasma-free hemoglobin, and total plasma protein were measured at initiation, 3, and 6 hr of support in the ECMO (N = 4) and sham (N = 4) groups. A stable ECMO flow (2.2 ± 0.1 L/min), low transmembrane pressure gradient, and steady blood O2 and CO2 levels were maintained. Platelet activation was low (<4%) in both the groups, whereas platelet responsiveness to agonist (platelet activating factor) was reduced in the sham group when compared with the ECMO group. There were no differences in the TEG parameters, fibrinogen concentration, plasma-free hemoglobin (<10 mg/dl), and plasma total protein between the two groups. The findings of low levels of platelet activation and plfHb suggest adequate blood biocompatibility of the integrated CentriMag-Novalung circuit use for short-term support in a model of PH.

5 citations