Author
Huosheng Hu
Other affiliations: University of Reading, Xiamen University, University of Oxford ...read more
Bio: Huosheng Hu is an academic researcher from University of Essex. The author has contributed to research in topics: Mobile robot & Robot. The author has an hindex of 50, co-authored 522 publications receiving 11976 citations. Previous affiliations of Huosheng Hu include University of Reading & Xiamen University.
Topics: Mobile robot, Robot, Robot control, Wheelchair, Robotics
Papers published on a yearly basis
Papers
More filters
TL;DR: This paper reviews recent research and development in pattern recognition- and non-pattern recognition-based myoelectric control, and presents state-of-the-art achievements in terms of their type, structure, and potential application.
Abstract: The development of an advanced human–machine interface has always been an interesting research topic in the field of rehabilitation, in which biomedical signals, such as myoelectric signals, have a key role to play. Myoelectric control is an advanced technique concerned with the detection, processing, classification, and application of myoelectric signals to control human-assisting robots or rehabilitation devices. This paper reviews recent research and development in pattern recognition- and non-pattern recognition-based myoelectric control, and presents state-of-the-art achievements in terms of their type, structure, and potential application. Directions for future research are also briefly outlined.
1,111 citations
TL;DR: Recent progress in human movement detection/tracking systems in general, and existing or potential application for stroke rehabilitation in particular are reviewed.
Abstract: Human motion tracking for rehabilitation has been an active research topic since the 1980s. It has been motivated by the increased number of patients who have suffered a stroke, or some other motor function disability. Rehabilitation is a dynamic process which allows patients to restore their functional capability to normal. To reach this target, a patients’ activities need to be continuously monitored, and subsequently corrected. This paper reviews recent progress in human movement detection/tracking systems in general, and existing or potential application for stroke rehabilitation in particular. Major achievements in these systems are summarised, and their merits and limitations individually presented. In addition, bottleneck problems in these tracking systems that remain open are highlighted, along with possible solutions.
749 citations
TL;DR: This work presents a method to adjust SVM parameters before classification, and examines overlapped segmentation and majority voting as two techniques to improve controller performance.
Abstract: This paper proposes and evaluates the application of support vector machine (SVM) to classify upper limb motions using myoelectric signals. It explores the optimum configuration of SVM-based myoelectric control, by suggesting an advantageous data segmentation technique, feature set, model selection approach for SVM, and postprocessing methods. This work presents a method to adjust SVM parameters before classification, and examines overlapped segmentation and majority voting as two techniques to improve controller performance. A SVM, as the core of classification in myoelectric control, is compared with two commonly used classifiers: linear discriminant analysis (LDA) and multilayer perceptron (MLP) neural networks. It demonstrates exceptional accuracy, robust performance, and low computational load. The entropy of the output of the classifier is also examined as an online index to evaluate the correctness of classification; this can be used by online training for long-term myoelectric control operations.
730 citations
01 Feb 2009
TL;DR: A solution for human tracking with a mobile robot that implements multisensor data fusion techniques based on the recognition of typical leg patterns extracted from laser scans, showing that robust human tracking can be performed within complex indoor environments.
Abstract: One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.
304 citations
TL;DR: In this paper, a receding horizon (RH) controller is developed for tracking control of a nonholonomic mobile robot and it is shown that the control strategy is feasible.
Abstract: In this paper, a receding horizon (RH) controller is developed for tracking control of a nonholonomic mobile robot. The control stability is guaranteed by adding a terminal-state penalty to the cost function and constraining the terminal state to a terminal-state region. The stability analysis in the terminal-state region is investigated, and a virtual controller is found. The analysis results show that the RH tracking control has simultaneous tracking and regulation capability. Simulation results are provided to verify the proposed control strategy. It is shown that the control strategy is feasible.
252 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
Journal Article•
28,685 citations
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
13,246 citations
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.
6,340 citations
TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Abstract: Due to object detection’s close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.
3,097 citations