Author
Iain E. G. Richardson
Other affiliations: Heriot-Watt University
Bio: Iain E. G. Richardson is an academic researcher from Robert Gordon University. The author has contributed to research in topics: Video quality & Multiview Video Coding. The author has an hindex of 19, co-authored 67 publications receiving 5985 citations. Previous affiliations of Iain E. G. Richardson include Heriot-Watt University.
Papers published on a yearly basis
Papers
More filters
Book•
19 Dec 2003
TL;DR: In this article, the MPEG-4 and H.264 standards are discussed and an overview of the technologies involved in their development is presented. But the focus is on the performance and not the technical aspects.
Abstract: About the Author.Foreword.Preface.Glossary.1. Introduction.2. Video Formats and Quality.3. Video Coding Concepts.4. The MPEG-4 and H.264 Standards.5. MPEG-4 Visual.6. H.264/MPEG-4 Part 10.7. Design and Performance.8. Applications and Directions.Bibliography.Index.
2,491 citations
02 Sep 2003
TL;DR: This paper presents a meta-review of the MPEG-4 and H.264 standards for video quality and design, and some of the standards themselves have been revised and improved since their publication in 2009.
Abstract: About the Author.Foreword.Preface.Glossary.1. Introduction.2. Video Formats and Quality.3. Video Coding Concepts.4. The MPEG-4 and H.264 Standards.5. MPEG-4 Visual.6. H.264/MPEG-4 Part 10.7. Design and Performance.8. Applications and Directions.Bibliography.Index.
1,520 citations
Book•
09 Aug 2010
TL;DR: This book unravels the mysteries behind the latest H.264 standard and delves deeper into each of the operations in the codec, providing readers with practical advice on how to get the most out of the standard.
Abstract: H.264 Advanced Video Coding or MPEG-4 Part 10 is fundamental to a growing range of markets such as high definition broadcasting, internet video sharing, mobile video and digital surveillance. This book reflects the growing importance and implementation of H.264 video technology. Offering a detailed overview of the system, it explains the syntax, tools and features of H.264 and equips readers with practical advice on how to get the most out of the standard. Packed with clear examples and illustrations to explain H.264 technology in an accessible and practical way. Covers basic video coding concepts, video formats and visual quality. Explains how to measure and optimise the performance of H.264 and how to balance bitrate, computation and video quality. Analyses recent work on scalable and multi-view versions of H.264, case studies of H.264 codecs and new technological developments such as the popular High Profile extensions. An invaluable companion for developers, broadcasters, system integrators, academics and students who want to master this burgeoning state-of-the-art technology. "[This book] unravels the mysteries behind the latest H.264 standard and delves deeper into each of the operations in the codec. The reader can implement (simulate, design, evaluate, optimize) the codec with all profiles and levels. The book ends with extensions and directions (such as SVC and MVC) for further research." Professor K. R. Rao, The University of Texas at Arlington, co-inventor of the Discrete Cosine Transform
663 citations
Book•
01 May 2002
TL;DR: Video Codec Design sets out to de-mystify the subject of video coding and present a practical, design-based approach to this emerging field, providing communications engineers, system designers, researchers and technical managers with an essential handbook to image and video compression technology.
Abstract: From the Publisher:
Video compression coding is the enabling technology behind a new wave of communication applications. From streaming internet video to broadcast digital television and digital cinema, the video codec is a key building block for a host of new multimedia applications and services. Video Codec Design sets out to de-mystify the subject of video coding and present a practical, design-based approach to this emerging field.
Featuring:
Guidance on the practical design and implementation of video coding technology. Explanation of the major video coding standards, including MPEG-2, MPEG-4, H.263 and H.26L. Detailed coverage of key video coding techniques and core algorithms. Examination of critical design issues including transmission, Quality of Service and processing platforms. A wealth of illustrations and practical examples, including quantitative comparisons of design alternatives.
Video Codec Design provides communications engineers, system designers, researchers and technical managers with an essential handbook to image and video compression technology. The clear presentation and emphasis on real-life examples make this book an excellent teaching tool for computer science and electronic engineering instructors.
213 citations
[...]
TL;DR: This chapter brings together some of the concepts discussed earlier and examines the issues faced by designers of video CODECs and systems that interface to video C ODECs, including interfacing, performance, resource usage and design time.
Abstract: In this chapter we bring together some of the concepts discussed earlier and examine the issues faced by designers of video CODECs and systems that interface to video CODECs. Key issues include interfacing (the format of the input and output data, controlling the operation of the CODEC), performance (frame rate, compression, quality), resource usage (computational resources, chip area) and design time. This last issue is important because of the fast pace of change in the market for multimedia communication systems. A short time-tomarket is critical for video coding applications and we discuss methods of streamlining the design flow. We present design strategies for two types of video CODEC, a software implementation (suitable for a general-purpose processor) and a hardware implementation (for FPGA or ASIC).
202 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
Book•
19 Dec 2003
TL;DR: In this article, the MPEG-4 and H.264 standards are discussed and an overview of the technologies involved in their development is presented. But the focus is on the performance and not the technical aspects.
Abstract: About the Author.Foreword.Preface.Glossary.1. Introduction.2. Video Formats and Quality.3. Video Coding Concepts.4. The MPEG-4 and H.264 Standards.5. MPEG-4 Visual.6. H.264/MPEG-4 Part 10.7. Design and Performance.8. Applications and Directions.Bibliography.Index.
2,491 citations
TL;DR: Details of a system that allows for an evolutionary introduction of depth perception into the existing 2D digital TV framework are presented and a comparison with the classical approach of "stereoscopic" video is compared.
Abstract: This paper presents details of a system that allows for an evolutionary introduction of depth perception into the existing 2D digital TV framework. The work is part of the European Information Society Technologies (IST) project “Advanced Three-Dimensional Television System Technologies” (ATTEST), an activity, where industries, research centers and universities have joined forces to design a backwards-compatible, flexible and modular broadcast 3D-TV system. At the very heart of the described new concept is the generation and distribution of a novel data representation format, which consists of monoscopic color video and associated perpixel depth information. From these data, one or more “virtual” views of a real-world scene can be synthesized in real-time at the receiver side (i. e. a 3D-TV set-top box) by means of so-called depth-image-based rendering (DIBR) techniques. This publication will provide: (1) a detailed description of the fundamentals of this new approach on 3D-TV; (2) a comparison with the classical approach of “stereoscopic” video; (3) a short introduction to DIBR techniques in general; (4) the development of a specific DIBR algorithm that can be used for the efficient generation of high-quality “virtual” stereoscopic views; (5) a number of implementation details that are specific to the current state of the development; (6) research on the backwards-compatible compression and transmission of 3D imagery using state-of-the-art MPEG (Moving Pictures Expert Group) tools.
1,560 citations
02 Sep 2003
TL;DR: This paper presents a meta-review of the MPEG-4 and H.264 standards for video quality and design, and some of the standards themselves have been revised and improved since their publication in 2009.
Abstract: About the Author.Foreword.Preface.Glossary.1. Introduction.2. Video Formats and Quality.3. Video Coding Concepts.4. The MPEG-4 and H.264 Standards.5. MPEG-4 Visual.6. H.264/MPEG-4 Part 10.7. Design and Performance.8. Applications and Directions.Bibliography.Index.
1,520 citations
TL;DR: An inventory of the world’s technological capacity from 1986 to 2007 reveals the evolution from analog to digital technologies, and the majority of the authors' technological memory has been in digital format since the early 2000s.
Abstract: We estimated the world’s technological capacity to store, communicate, and compute information, tracking 60 analog and digital technologies during the period from 1986 to 2007. In 2007, humankind was able to store 2.9 × 10 20 optimally compressed bytes, communicate almost 2 × 10 21 bytes, and carry out 6.4 × 10 18 instructions per second on general-purpose computers. General-purpose computing capacity grew at an annual rate of 58%. The world’s capacity for bidirectional telecommunication grew at 28% per year, closely followed by the increase in globally stored information (23%). Humankind’s capacity for unidirectional information diffusion through broadcasting channels has experienced comparatively modest annual growth (6%). Telecommunication has been dominated by digital technologies since 1990 (99.9% in digital format in 2007), and the majority of our technological memory has been in digital format since the early 2000s (94% digital in 2007).
1,450 citations