scispace - formally typeset
Search or ask a question

Showing papers by "Inez S. Batista published in 1991"


Journal ArticleDOI
TL;DR: In this article, anomalous variations in F region peak density and height, occurring simultaneously with sharp variations on H component of magnetic field over Fortaleza and with auroral substorms, give strong evidence of penetration of magnetospheric electric fields to equatorial and low latitudes.
Abstract: The great geomagnetic storm of March 13, 1989 caused severely anomalous behavior in the equatorial and low latitude ionosphere in the Brazilian longitude sector. The ionograms over Fortaleza indicated F region upward plasma drifts exceeding 200 m s{sup {minus}1} at 1,830 LT as compared to normal values of 40 m s{sup {minus}1} for this epoch. Large negative phases were observed in foF2 over Fortaleza and Cachoeira Paulista and in total electron content measured over Sao Jose dos Campos. The equatorial ionization anomaly was totally absent either because of its anomalous expansion to higher latitudes or because of inhibition of its development on the two nights following the storm. Many anomalous variations in F region peak density and height, occurring simultaneously with sharp variations on H component of magnetic field over Fortaleza and with auroral substorms, give strong evidence of penetration of magnetospheric electric fields to equatorial and low latitudes. Auroral type sporadic E and night E layers are observed after 1,830 LT over Cachoeira Paulista, the latter showing peak electron density of about 6 {times} 10{sup 4} el cm{sup {minus}3}, therefore comparable to the E layer peak density in the morning hours at that station. The Fortaleza ionograms show themore » presence of the F1 layer at night, a phenomenon that has never been observed over our two stations before. The role played by electric fields penetrating from high to low latitudes, particle precipitation, and composition changes in explaining the observations is discussed.« less

134 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the statistical behavior of the EIA response to magnetospheric disturbances and pointed out some outstanding problems that deserve attention in the coming years, and also pointed out that direct penetration to the equatorial latitudes of the magnetosphere electric fields and the thermospheric disturbances involving winds, electric fields, and composition changes can produce significant alteration in EIA morphology and dynamics.

86 citations