scispace - formally typeset
Search or ask a question

Showing papers by "Isak S. Pretorius published in 1993"


Journal ArticleDOI
TL;DR: It is confirmed that co-expression of the pelE and peh1 genes synergistically enhanced pectate degradation in Saccharomyces cerevisiae transformants and was stably introduced into two commercial wine yeast strains.
Abstract: A pectate lyase (PL)-encoding gene (pelE) from Erwinia chrysanthemi and a polygalacturonase (PG)-encoding gene (peh1) from E. carotovora were each inserted between a novel yeast expression-secretion cassette and a yeast gene terminator, and cloned separately into a yeast-centromeric shuttle vector (YCp50), generating recombinant plasmids pAMS12 and pAMS13. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1 p ), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5 T ). Secretion of PL and PG was directed by the signal sequence of the yeast mating pheromone α-factor (MFα1 s ). A pectinase cassette comprising ADC1 P -MFα1 s -pelE-TRP5 T and ADC1 P -MFα1 s -peh1-TRP5 T was subcloned into YCp50, generating plasmid pAMS14. Subsequently, the dominant selectable Geneticin G418-resistance (GtR) marker, APH1, iserted between the yeast uridine diphosphoglucose 4-epimerase gene promoter (GAL10 P ) and yeast orotidine-5′-phosphate carboxylase gene terminator (URA3 T ), was cloned into pAMS14, resulting in plasmid pAMS15. Plasmids pAMS12, pAMS13 and pAMS14 were transformed into a laboratory strain of Saccharomyces cerevisiae, whereas pAMS15 was stably introduced into two commercial wine yeast strains. DNA-DNA and DNA-RNA hybridization analyses revealed the presence of these plasmids, and the pelE and peh1 transcripts in the yeast transformants, respectively. A polypectate aharose assay indicated the extracellular production of biologically active PL and PG by the S. cerevisiae transformants and confirmed that co-expression of the pelE and peh1 genes synergistically enhanced pectate degradation.

34 citations


Journal ArticleDOI
TL;DR: Comparisons of the K. pneumoniae pullulanase amino-acid sequence with the amino- Acid sequences of other debranching enzymes and α-, β- and γ-amylases indicated that these debr branching enzymes have amino- acid regions similar to those found in α-amymylases.
Abstract: The enzymatic hydrolysis of starch, consisting of linear (amylose) and branched (amylopectin) glucose polymers, is catalyzed by alpha-, beta- and glucoamylases (gamma-amylases), cyclodextrinases, alpha-glucosidases, and debranching enzymes. Saccharomyces cerevisiae cannot utilize starch. Our laboratory has previously co-expressed the Bacillus amyloliquefaciens alpha-amylase (AMY) and the Saccharomyces diastaticus glucoamylase (STA2) genes in S. cerevisiae. A gene encoding a debranching enzyme (pullulanase) from Klebsiella pneumoniae ATCC15050 was cloned and its nucleotide sequence determined. This gene will be co-expressed with the alpha- and gamma-amylase to produce an amylolytic S. cerevisiae strain. Extensive data base comparisons of the K. pneumoniae pullulanase amino-acid sequence with the amino-acid sequences of other debranching enzymes and alpha-, beta- and gamma-amylases (from bacteria, yeasts, higher fungi and higher eukaryotes), indicated that these debranching enzymes have amino-acid regions similar to those found in alpha-amylases. The conserved regions in alpha-amylases comprise key residues that are implicated in substrate binding, catalysis, and calcium binding and are as follows. Region 1: DVVINH; region 2: GFRLDAAKH and region 4: FVDNHD. When comparing conserved regions, no similarity could be detected between debranching enzymes and beta- and gamma-amylases.

30 citations


Journal ArticleDOI
TL;DR: Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-Amylase production in Saccharomyces cerevisiae.
Abstract: Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.

13 citations


Journal ArticleDOI
TL;DR: The peh1 DNA fragment encoding the mature polygalacturonase was inserted between two different yeast expression-secretion cassettes and a yeast gene terminator, generating recombinant yeast-integrating shuttle plasmids pAMS10 and pAMS11 that were transformed and stably integrated into the genome of a laboratory strain of Saccharomyces cerevisiae.
Abstract: A 1209-base pair (bp) DNA fragment containing the endopolygalacturonase-encoding gene (peh1) from Erwinia carotovora subsp. carotovora was amplified by the polymerase chain reaction (PCR) technique and expressed in Escherichia coli. The nucleotide sequence of the PCR product was determined and found to be highly homologous to the primary structures of other polygalacturonase-encoding genes. The peh1 DNA fragment encoding the mature polygalacturonase was inserted between two different yeast expression-secretion cassettes and a yeast gene terminator, generating recombinant yeast-integrating shuttle plasmids pAMS10 and pAMS11. These YIp5-derived plasmids were transformed and stably integrated into the genome of a laboratory strain of Saccharomyces cerevisiae. Transcription initiation signals present in these expression-secretion cassettes were derived from the yeast alcohol dehydrogenase (ADC1P) or mating pheromone alpha-factor (MF alpha 1P) gene promoters. The transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of polygalacturonase was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S). Northern blot analysis revealed the presence of peh1 mRNA in the yeast transformants and a polypectate agarose test was used to monitor polygalacturonase production.

13 citations


Journal ArticleDOI
TL;DR: A 3800-base pair DNA fragment encoding the mature pullulanase from Klebsiella pneumoniae was inserted between two different yeast expression-secretion cassettes and an yeast gene terminator and confirmed the presence of pulA in transformed yeasts and Northern-blot analysis revealed the existence of PUL1 mRNA.
Abstract: A 3800-base pair (bp) DNA fragment encoding the mature pullulanase from Klebsiella pneumoniae was inserted between two different yeast expression-secretion cassettes and an yeast gene terminator. These cassettes were cloned into an yeast centromeric plasmid YCplacIII and transformed into laboratory strains of Saccharomyces cerevisiae. Transcription initiation signals were derived from the mating pheromone α-factor (MFα1p) and alcohol dehydrogenase (ADC1p) gene promoters. Secretion of pullulanase was directed by the leader sequence of the yeast mating pheromone α-factor (MFα1s). Transcription termination was effected by the yeast tryptophan synthase gene terminator (TRP5T). Southernblot analysis confirmed the presence of pulA in transformed yeasts and Northern-blot analysis revealed the presence of PUL1 mRNA. A pullulan agarose assay indicated the extracellular production of biologically active pullulanase by S. cerevisiae.

12 citations