scispace - formally typeset
Search or ask a question
Author

Ivan Bratko

Other affiliations: University UCINF, The Turing Institute, Jožef Stefan Institute  ...read more
Bio: Ivan Bratko is an academic researcher from University of Ljubljana. The author has contributed to research in topics: Instance-based learning & Inductive logic programming. The author has an hindex of 42, co-authored 227 publications receiving 7731 citations. Previous affiliations of Ivan Bratko include University UCINF & The Turing Institute.


Papers
More filters
Book
01 Jan 1986
TL;DR: The new edition of Prolog Guide to AI programming has been fully revised and extended to provide an even greater range of applications, enhancing its value as a stand-alone guide to Prolog, artificial intelligence, or AI programming.
Abstract: From the Publisher: B> This best-selling guide to Prolog has been fully revised and extended to provide an even greater range of applications, enhancing its value as a stand-alone guide to Prolog, artificial intelligence, or AI programming. Ivan Bratko discusses natural language processing with grammar rules, planning, and machine learning. The coverage of meta-programming includes meta-interpreters and object-oriented programming in Prolog. The new edition includes coverage of: constraint logic programming; qualitative reasoning; inductive logic programming; recently developed algorithms; belief networks for handling uncertainty; and a major update on machine learning. This book is aimed at programmers who need to learn AI programming.

980 citations

Book
01 Jul 1998
TL;DR: This practical guide provides a straightforward introduction to basic machine learning and data mining methods, covering the analysis of numerical, text, and sound data.
Abstract: From the Publisher: Master the new computational tools to get the most out of your information system. This practical guide, the first to clearly outline the situation for the benefit of engineers and scientists, provides a straightforward introduction to basic machine learning and data mining methods, covering the analysis of numerical, text, and sound data.

367 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail, is described, and a reported shortcoming of the basic algorithm is discussed.
Abstract: The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.

17,177 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain and compares the wrapper approach to induction without feature subset selection and to Relief, a filter approach tofeature subset selection.

8,610 citations

Book
30 Jun 2002
TL;DR: This paper presents a meta-anatomy of the multi-Criteria Decision Making process, which aims to provide a scaffolding for the future development of multi-criteria decision-making systems.
Abstract: List of Figures. List of Tables. Preface. Foreword. 1. Basic Concepts. 2. Evolutionary Algorithm MOP Approaches. 3. MOEA Test Suites. 4. MOEA Testing and Analysis. 5. MOEA Theory and Issues. 3. MOEA Theoretical Issues. 6. Applications. 7. MOEA Parallelization. 8. Multi-Criteria Decision Making. 9. Special Topics. 10. Epilog. Appendix A: MOEA Classification and Technique Analysis. Appendix B: MOPs in the Literature. Appendix C: Ptrue & PFtrue for Selected Numeric MOPs. Appendix D: Ptrue & PFtrue for Side-Constrained MOPs. Appendix E: MOEA Software Availability. Appendix F: MOEA-Related Information. Index. References.

5,994 citations