scispace - formally typeset
Search or ask a question

Showing papers by "Ivan Stoianov published in 2018"


Journal ArticleDOI
TL;DR: A hydraulically informed surrogate measure of pipe criticality for the resilience analysis of WDNs, called Water Flow Edge Betweenness Centrality (WFEBC), which combines the random walk betweenness centrality with hydraulic (energy) loss principles in pipes is introduced.
Abstract: Water Distribution Networks (WDN) are complex and highly interconnected systems. To maintain operation under failure conditions, WDNs should have built-in resilience based on topological and energy redundancy. There are various methods for analysing the resilience of WDNs based on either hydraulic models or surrogate network measures; however, not a single universally accepted method exists. Hydraulic modeling of disruptive operational scenarios suffer from combinatorial restrictions and uncertainties. Methods that rely on surrogate network measures do not take into account the complex interactions between topological and energy redundancy. To bridge this gap, the presented work introduces a hydraulically informed surrogate measure of pipe criticality for the resilience analysis of WDNs, called Water Flow Edge Betweenness Centrality (WFEBC). The WFEBC combines the random walk betweenness centrality with hydraulic (energy) loss principles in pipes. The proposed network resilience estimation method is applied to a case study network and an operational network. Furthermore, a network decomposition approach is proposed to complement the network estimation method and facilitate its scalability to large operational networks. The described resilience analysis method is benchmarked against a hydraulic model-based analysis of WDN reserve capacity. WFEBC is also applied to assess the improvement in resilience allowed by the implementation of a dynamically adaptive topology in an operational network. The benefits and limitations of the proposed method are discussed.

25 citations


Journal ArticleDOI
TL;DR: An efficient algorithm for the network analysis of valve closures is proposed, which allows enforcing favorable changes in the flow velocities for maximizing the SCC by determining an optimal set of links to isolate in the forming of a more branched network, while concurrently satisfying the hydraulic and regulatory pressure constraints at the demand nodes.
Abstract: In this paper, a new mathematical framework is proposed for maximizing the self-cleaning capacity (SCC) of drinking water distribution systems by controlling the diurnal peak flow velocities in the pipes under normal operation. This is achieved through an optimal change of the network connectivity (topology). This paper proposes an efficient algorithm for the network analysis of valve closures, which allows enforcing favorable changes in the flow velocities for maximizing the SCC by determining an optimal set of links to isolate in the forming of a more branched network, while concurrently satisfying the hydraulic and regulatory pressure constraints at the demand nodes. Multiple stochastic demands from an end-use demand model are generated to test the robustness in the improved SCC for the modified network connectivity under changing demand. An operational network model is used to demonstrate the efficacy of the proposed approach.

15 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the impact of sectorisation of water supply networks (WSNs) on water quality and the likelihood of discolouration incidents using a set of surrogate hydraulic variables and an analysis of the hydraulic condition in pipes.
Abstract: The sectorisation of water supply networks (WSNs) includes the permanent closure of valves in order to achieve a cost-effective leakage management and simplify pressure control. The impact of networks sectorisation, also known as district metered areas (DMAs), on water quality and discolouration has not been extensively studied and it remains unknown. In addition, hydraulic variables used in the literature for assessing the likelihood of potential discolouration are limited and inconclusive. This paper investigates a methodology to evaluate the impact of networks sectorisation (DMAs) on water quality and the likelihood of discolouration incidents. The methodology utilises a set of surrogate hydraulic variables and an analysis of the hydraulic condition in pipes with historic discolouration complaints. The proposed methodology has been applied to a large-scale WSN, with and without sectors, in order to assess the potential impact of DMAs on water quality. The results demonstrate that the sectorisation of WSN (DMAs) could compromise the overall water quality and increase the likelihood of discolouration incidents. The results of this study and the proposed surrogate hydraulic variables facilitate the formulation of optimisation problems for the re-design and control of WSNs with sectorised topologies.

11 citations