scispace - formally typeset
Search or ask a question

Showing papers by "Jane Rogers published in 1999"


Journal ArticleDOI
Ian Dunham1, Nobuyoshi Shimizu1, Bruce A. Roe1, S. Chissoe1  +220 moreInstitutions (15)
02 Dec 1999-Nature
TL;DR: The sequence of the euchromatic part of human chromosome 22 is reported, which consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
Abstract: Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.

1,075 citations


Journal ArticleDOI
28 Oct 1999-Nature
TL;DR: The first complete sequence and gene map of a human major histocompatibility complex (MHC), a region on chromosome 6 which is essential to the immune system, is reported, expected to be invaluable for the identification of many common disease loci.
Abstract: Here we report the first complete sequence and gene map of a human major histocompatibility complex (MHC), a region on chromosome 6 which is essential to the immune system (reviewed in ref. 1). When it was discovered over 50 years ago the region was thought to specify histocompatibility genes, but their nature has been resolved only in the last two decades. Although many of the 224 identified gene loci (128 predicted to be expressed) are still of unknown function, we estimate that about 40% of the expressed genes have immune system function. Over 50% of the MHC has been sequenced twice, in different haplotypes, giving insight into the extraordinary polymorphism and evolution of this region. Several genes, particularly of the MHC class II and III regions, can be traced by sequence similarity and synteny to over 700 million years ago, dearly predating the emergence of the adaptive immune system some 400 million years ago. The sequence is expected to be invaluable for the identification of many common disease loci. In the past, the search for these loci has been hampered by the complexity of high gene density and linkage disequilibrium.

934 citations


Journal ArticleDOI
Klaus F. X. Mayer1, C. Schüller1, R. Wambutt, George Murphy2  +230 moreInstitutions (21)
16 Dec 1999-Nature
TL;DR: Analysis of 17.38 megabases of unique sequence, representing about 17% of the Arabidopsis genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements.
Abstract: The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

411 citations


Journal ArticleDOI
Jane Rogers1
15 Oct 1999-Science
TL;DR: Jane Rogers of the Sanger Centre discusses the latest developments in sequencing technology, many of which were presented at the recent International Conference on Automation in Mapping and DNA Sequencing.
Abstract: The requirement for inexpensive, very accurate high throughput sequencing is even more crucial now that information from the human genome sequencing project is starting to emerge. In particular several projects are underway to sequence selected regions of the genomes of many different individuals in an effort to pinpoint single nucleotide polymorphisms that are associated with human disease. In a TechView article, Jane Rogers of the Sanger Centre discusses the latest developments in sequencing technology, many of which were presented at the recent International Conference on Automation in Mapping and DNA Sequencing.

2 citations