scispace - formally typeset
Search or ask a question

Showing papers by "Javier DeFelipe published in 1996"


Journal ArticleDOI
01 Aug 1996-Brain
TL;DR: The finding that these cells are among the most vulnerable types of GABAergic interneurons in the epileptogenic temporal cortex indicates that they might be of great functional importance, since the axon terminals of chandelier cells are likely to exert powerful regulation of impulse generation in cortical pyramidal cells.
Abstract: Immunocytochemical methods were used to study alterations in inhibitory neuronal circuits in human neocortex resected during surgical treatment of intractable temporal epilepsy associated or not with brain tumours. The epileptogenic cortex was characterized and divided into spiking or non-spiking zones by intraoperative electrocorticography (ECOG). The resected cortex was cut into blocks, sectioned and stained immunocytochemically for visualization of glutamic acid decarboxylase (GAD), the calcium-binding protein, parvalbumin (PV) and glial fibrillary acidic protein (GFAP). A variety of alterations in cortical neuronal circuits as revealed by immunocytochemical and histological methods were found. Similar alterations in inhibitory neuronal circuits appear to occur independently of the primary epileptogenic site and pathology associated with epilepsy, which suggests that there is possibly a common basic underlying mechanism that leads to seizure activity. These changes were apparently unrelated to ECOG findings at surgery, which bring into question the value of the use of interictal epileptic discharges recorded by ECOG to guide cortical resections. The most conspicuous and common change was the loss of chandelier cells. The finding that these cells are among the most vulnerable types of GABAergic interneurons in the epileptogenic temporal cortex indicates that they might be of great functional importance, since the axon terminals of chandelier cells are likely to exert powerful regulation of impulse generation in cortical pyramidal cells. Therefore, these cells might represent a key component in the aetiology of human epilepsy.

150 citations


Journal ArticleDOI
TL;DR: The quantitative and qualitative data suggest that these calcium‐binding proteins are present in similar cortical circuits in all primates, but that in the human neocortex, there might be additional GABAergic and perhaps also non‐GABAergic interneurons with unique chemical characteristics.
Abstract: The calcium-binding proteins calbindin D-28k (CalB) and calretinin (CalR) have been shown to be useful markers of neuronal subpopulations located mainly in layers II-III of the neocortex of a variety of species, including human. Double labeling immunocytochemical studies of CalB, CalR, and GABA in experimental animals have shown that CalB and CalR are present in separate subpopulations of neurons. However, there are no studies of colocalization of these calcium-binding proteins and GABA in the human neocortex. The principal goal of the present work was to investigate the degree of colocalization of these substances in layers II-III of the human temporal neocortex, using a postembedding immunocytochemical method. The patterns of staining for CalB, CalR, and GABA in the human cortex were similar to those found in monkey neocortex. However, the degree of colocalization for certain combinations was different from that reported in the monkey and other experimental animals. A relatively large proportion of CalB- and CalR-immunoreactive cells (approximately 71% and 74%, respectively) were found to be immunoreactive for GABA. However, the degree of colocalization of CalB with CalR was low (between 4% and 6%). Thus, our quantitative and qualitative data suggest that these calcium-binding proteins are present in similar cortical circuits in all primates, but that in the human neocortex, there might be additional GABAergic and perhaps also non-GABAergic interneurons with unique chemical characteristics.

97 citations


Journal ArticleDOI
TL;DR: Results suggest that thyroid hormones are necessary for normal development of cortical circuits in which PV-positive cells are involved, and in normal and hypothyroid adult rats.

75 citations