Author
Jerome H. Saltzer
Other affiliations: University of Cambridge
Bio: Jerome H. Saltzer is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Ring (mathematics) & Encryption. The author has an hindex of 24, co-authored 52 publications receiving 8601 citations. Previous affiliations of Jerome H. Saltzer include University of Cambridge.
Topics: Ring (mathematics), Encryption, Demand paging, Argument, Access control
Papers published on a yearly basis
Papers
More filters
Proceedings Article•
01 Jan 1981TL;DR: A design principle is presented that helps guide placement of functions among the modules of a distributed computer system and suggests that functions placed at low levels of a system may be redundant or of little value when compared with the cost of providing them at that low level.
Abstract: This paper presents a design principle that helps guide placement of functions among the modules of a distributed computer system. The principle, called the end-to-end argument, suggests that functions placed at low levels of a system may be redundant or of little value when compared with the cost of providing them at that low level. Examples discussed in the paper include bit error recovery, security using encryption, duplicate message suppression, recovery from system crashes, and delivery acknowledgement. Low level mechanisms to support these functions are justified only as performance enhancements.
2,091 citations
01 Sep 1975
TL;DR: In this article, the authors explore the mechanics of protecting computer-stored information from unauthorized use or modification, focusing on those architectural structures-whether hardware or software-that are necessary to support information protection.
Abstract: This tutorial paper explores the mechanics of protecting computer-stored information from unauthorized use or modification. It concentrates on those architectural structures-whether hardware or software-that are necessary to support information protection. The paper develops in three main sections. Section I describes desired functions, design principles, and examples of elementary protection and authentication mechanisms. Any reader familiar with computers should find the first section to be reasonably accessible. Section II requires some familiarity with descriptor-based computer architecture. It examines in depth the principles of modern protection architectures and the relation between capability systems and access control list systems, and ends with a brief analysts of protected subsystems and protected objects. The reader who is dismayed by either the prerequisites or the level of detail in the second section may wish to skip to Section III, which reviews the state of the art and current research projects and provides suggestions for further reading.
2,063 citations
TL;DR: The end-to-end argument as discussed by the authors suggests that functions placed at low levels of a distributed computer system may be redundant or of little value when compared with the cost of providing them at that low level.
Abstract: This paper presents a design principle that helps guide placement of functions among the modules of a distributed computer system. The principle, called the end-to-end argument, suggests that functions placed at low levels of a system may be redundant or of little value when compared with the cost of providing them at that low level. Examples discussed in the paper include bit error recovery, security using encryption, duplicate message suppression, recovery from system crashes, and delivery acknowledgement. Low level mechanisms to support these functions are justified only as performance enhancements.
1,892 citations
TL;DR: Five design principles help provide insight into the tradeoffs among different possible designs in the Multics system and several known weaknesses in the current protection mechanism design are discussed.
Abstract: The design of mechanisms to control the sharing of information in the Multics system is described. Five design principles help provide insight into the tradeoffs among different possible designs. The key mechanisms described include access control lists, hierarchical control of access specifications, identification and authentication of users, and primary memory protection. The paper ends with a discussion of several known weaknesses in the current protection mechanism design.
444 citations
TL;DR: The basic idea is to ensure that data available to the attacker is sufficiently unpredictable to prevent an offline verification of whether a guess is successful or not and to examine protocols to detect vulnerabilities to such attacks.
Abstract: In a security system that allows people to choose their own passwords, people tend to choose passwords that can be easily guessed. This weakness exists in practically all widely used systems. Instead of forcing users to choose secrets that are likely to be difficult for them to remember, solutions that maintain user convenience and a high level of security at the same time are proposed. The basic idea is to ensure that data available to the attacker is sufficiently unpredictable to prevent an offline verification of whether a guess is successful or not. Common forms of guessing attacks are examined, examples of cryptographic protocols that are immune to such attacks are developed, and a systematic way to examine protocols to detect vulnerabilities to such attacks is suggested. >
425 citations
Cited by
More filters
Book•
01 Jan 1996TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher:
A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.
13,597 citations
01 Aug 2000
TL;DR: Greedy Perimeter Stateless Routing is presented, a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions and its scalability on densely deployed wireless networks is demonstrated.
Abstract: We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router's immediate neighbors in the network topology. When a packet reaches a region where greedy forwarding is impossible, the algorithm recovers by routing around the perimeter of the region. By keeping state only about the local topology, GPSR scales better in per-router state than shortest-path and ad-hoc routing protocols as the number of network destinations increases. Under mobility's frequent topology changes, GPSR can use local topology information to find correct new routes quickly. We describe the GPSR protocol, and use extensive simulation of mobile wireless networks to compare its performance with that of Dynamic Source Routing. Our simulations demonstrate GPSR's scalability on densely deployed wireless networks.
7,384 citations
25 Aug 2003
TL;DR: This work proposes a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources.
Abstract: The highly successful architecture and protocols of today's Internet may operate poorly in environments characterized by very long delay paths and frequent network partitions. These problems are exacerbated by end nodes with limited power or memory resources. Often deployed in mobile and extreme environments lacking continuous connectivity, many such networks have their own specialized protocols, and do not utilize IP. To achieve interoperability between them, we propose a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. The architecture operates as an overlay above the transport layers of the networks it interconnects, and provides key services such as in-network data storage and retransmission, interoperable naming, authenticated forwarding and a coarse-grained class of service.
3,511 citations
Book•
01 Jan 2004
TL;DR: This book offers a detailed and comprehensive presentation of the basic principles of interconnection network design, clearly illustrating them with numerous examples, chapter exercises, and case studies, allowing a designer to see all the steps of the process from abstract design to concrete implementation.
Abstract: One of the greatest challenges faced by designers of digital systems is optimizing the communication and interconnection between system components. Interconnection networks offer an attractive and economical solution to this communication crisis and are fast becoming pervasive in digital systems. Current trends suggest that this communication bottleneck will be even more problematic when designing future generations of machines. Consequently, the anatomy of an interconnection network router and science of interconnection network design will only grow in importance in the coming years.
This book offers a detailed and comprehensive presentation of the basic principles of interconnection network design, clearly illustrating them with numerous examples, chapter exercises, and case studies. It incorporates hardware-level descriptions of concepts, allowing a designer to see all the steps of the process from abstract design to concrete implementation.
·Case studies throughout the book draw on extensive author experience in designing interconnection networks over a period of more than twenty years, providing real world examples of what works, and what doesn't.
·Tightly couples concepts with implementation costs to facilitate a deeper understanding of the tradeoffs in the design of a practical network.
·A set of examples and exercises in every chapter help the reader to fully understand all the implications of every design decision.
Table of Contents
Chapter 1 Introduction to Interconnection Networks
1.1 Three Questions About Interconnection Networks
1.2 Uses of Interconnection Networks
1.3 Network Basics
1.4 History
1.5 Organization of this Book
Chapter 2 A Simple Interconnection Network
2.1 Network Specifications and Constraints
2.2 Topology
2.3 Routing
2.4 Flow Control
2.5 Router Design
2.6 Performance Analysis
2.7 Exercises
Chapter 3 Topology Basics
3.1 Nomenclature
3.2 Traffic Patterns
3.3 Performance
3.4 Packaging Cost
3.5 Case Study: The SGI Origin 2000
3.6 Bibliographic Notes
3.7 Exercises
Chapter 4 Butterfly Networks
4.1 The Structure of Butterfly Networks
4.2 Isomorphic Butterflies
4.3 Performance and Packaging Cost
4.4 Path Diversity and Extra Stages
4.5 Case Study: The BBN Butterfly
4.6 Bibliographic Notes
4.7 Exercises
Chapter 5 Torus Networks
5.1 The Structure of Torus Networks
5.2 Performance
5.3 Building Mesh and Torus Networks
5.4 Express Cubes
5.5 Case Study: The MIT J-Machine
5.6 Bibliographic Notes
5.7 Exercises
Chapter 6 Non-Blocking Networks
6.1 Non-Blocking vs. Non-Interfering Networks
6.2 Crossbar Networks
6.3 Clos Networks
6.4 Benes Networks
6.5 Sorting Networks
6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch
6.7 Bibliographic Notes
6.8 Exercises
Chapter 7 Slicing and Dicing
7.1 Concentrators and Distributors
7.2 Slicing and Dicing
7.3 Slicing Multistage Networks
7.4 Case Study: Bit Slicing in the Tiny Tera
7.5 Bibliographic Notes
7.6 Exercises
Chapter 8 Routing Basics
8.1 A Routing Example
8.2 Taxonomy of Routing Algorithms
8.3 The Routing Relation
8.4 Deterministic Routing
8.5 Case Study: Dimension-Order Routing in the Cray T3D
8.6 Bibliographic Notes
8.7 Exercises
Chapter 9 Oblivious Routing
9.1 Valiant's Randomized Routing Algorithm
9.2 Minimal Oblivious Routing
9.3 Load-Balanced Oblivious Routing
9.4 Analysis of Oblivious Routing
9.5 Case Study: Oblivious Routing in the
Avici Terabit Switch Router(TSR)
9.6 Bibliographic Notes
9.7 Exercises
Chapter 10 Adaptive Routing
10.1 Adaptive Routing Basics
10.2 Minimal Adaptive Routing
10.3 Fully Adaptive Routing
10.4 Load-Balanced Adaptive Routing
10.5 Search-Based Routing
10.6 Case Study: Adaptive Routing in the
Thinking Machines CM-5
10.7 Bibliographic Notes
10.8 Exercises
Chapter 11 Routing Mechanics
11.1 Table-Based Routing
11.2 Algorithmic Routing
11.3 Case Study: Oblivious Source Routing in the
IBM Vulcan Network
11.4 Bibliographic Notes
11.5 Exercises
Chapter 12 Flow Control Basics
12.1 Resources and Allocation Units
12.2 Bufferless Flow Control
12.3 Circuit Switching
12.4 Bibliographic Notes
12.5 Exercises
Chapter 13 Buffered Flow Control
13.1 Packet-Buffer Flow Control
13.2 Flit-Buffer Flow Control
13.3 Buffer Management and Backpressure
13.4 Flit-Reservation Flow Control
13.5 Bibliographic Notes
13.6 Exercises
Chapter 14 Deadlock and Livelock
14.1 Deadlock
14.2 Deadlock Avoidance
14.3 Adaptive Routing
14.4 Deadlock Recovery
14.5 Livelock
14.6 Case Study: Deadlock Avoidance in the Cray T3E
14.7 Bibliographic Notes
14.8 Exercises
Chapter 15 Quality of Service
15.1 Service Classes and Service Contracts
15.2 Burstiness and Network Delays
15.3 Implementation of Guaranteed Services
15.4 Implementation of Best-Effort Services
15.5 Separation of Resources
15.6 Case Study: ATM Service Classes
15.7 Case Study: Virtual Networks in the Avici TSR
15.8 Bibliographic Notes
15.9 Exercises
Chapter 16 Router Architecture
16.1 Basic Router Architecture
16.2 Stalls
16.3 Closing the Loop with Credits
16.4 Reallocating a Channel
16.5 Speculation and Lookahead
16.6 Flit and Credit Encoding
16.7 Case Study: The Alpha 21364 Router
16.8 Bibliographic Notes
16.9 Exercises
Chapter 17 Router Datapath Components
17.1 Input Buffer Organization
17.2 Switches
17.3 Output Organization
17.4 Case Study: The Datapath of the IBM Colony
Router
17.5 Bibliographic Notes
17.6 Exercises
Chapter 18 Arbitration
18.1 Arbitration Timing
18.2 Fairness
18.3 Fixed Priority Arbiter
18.4 Variable Priority Iterative Arbiters
18.5 Matrix Arbiter
18.6 Queuing Arbiter
18.7 Exercises
Chapter 19 Allocation
19.1 Representations
19.2 Exact Algorithms
19.3 Separable Allocators
19.4 Wavefront Allocator
19.5 Incremental vs. Batch Allocation
19.6 Multistage Allocation
19.7 Performance of Allocators
19.8 Case Study: The Tiny Tera Allocator
19.9 Bibliographic Notes
19.10 Exercises
Chapter 20 Network Interfaces
20.1 Processor-Network Interface
20.2 Shared-Memory Interface
20.3 Line-Fabric Interface
20.4 Case Study: The MIT M-Machine Network Interface
20.5 Bibliographic Notes
20.6 Exercises
Chapter 21 Error Control 411
21.1 Know Thy Enemy: Failure Modes and Fault Models
21.2 The Error Control Process: Detection, Containment,
and Recovery
21.3 Link Level Error Control
21.4 Router Error Control
21.5 Network-Level Error Control
21.6 End-to-end Error Control
21.7 Bibliographic Notes
21.8 Exercises
Chapter 22 Buses
22.1 Bus Basics
22.2 Bus Arbitration
22.3 High Performance Bus Protocol
22.4 From Buses to Networks
22.5 Case Study: The PCI Bus
22.6 Bibliographic Notes
22.7 Exercises
Chapter 23 Performance Analysis
23.1 Measures of Interconnection Network Performance
23.2 Analysis
23.3 Validation
23.4 Case Study: Efficiency and Loss in the
BBN Monarch Network
23.5 Bibliographic Notes
23.6 Exercises
Chapter 24 Simulation
24.1 Levels of Detail
24.2 Network Workloads
24.3 Simulation Measurements
24.4 Simulator Design
24.5 Bibliographic Notes
24.6 Exercises
Chapter 25 Simulation Examples 495
25.1 Routing
25.2 Flow Control Performance
25.3 Fault Tolerance
Appendix A Nomenclature
Appendix B Glossary
Appendix C Network Simulator
3,233 citations
01 Sep 2012
TL;DR: A survey of technologies, applications and research challenges for Internetof-Things is presented, in which digital and physical entities can be linked by means of appropriate information and communication technologies to enable a whole new class of applications and services.
Abstract: The term ‘‘Internet-of-Things’’ is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internetof-Things.
3,172 citations