scispace - formally typeset
Search or ask a question

Showing papers by "Jerzy Lewandowski published in 2023"


06 Feb 2023
TL;DR: In this paper , the authors take up the quantum Riemannian geometry of a spatial slice of spacetime and show that quantum geometry emerges from the direct quantization of the finite number of degrees of freedom of the gravitational field encoded in discrete geometries.
Abstract: In this chapter we take up the quantum Riemannian geometry of a spatial slice of spacetime. While researchers are still facing the challenge of observing quantum gravity, there is a geometrical core to loop quantum gravity that does much to define the approach. This core is the quantum character of its geometrical observables: space and spacetime are built up out of Planck-scale quantum grains. The interrelations between these grains are described by spin networks, graphs whose edges capture the bounding areas of the interconnected nodes, which encode the extent of each grain. We explain how quantum Riemannian geometry emerges from two different approaches: in the first half of the chapter we take the perspective of continuum geometry and explain how quantum geometry emerges from a few principles, such as the general rules of canonical quantization of field theories, a classical formulation of general relativity in which it appears embedded in the phase space of Yang-Mills theory, and general covariance. In the second half of the chapter we show that quantum geometry also emerges from the direct quantization of the finite number of degrees of freedom of the gravitational field encoded in discrete geometries. These two approaches are complimentary and are offered to assist readers with different backgrounds enter the compelling arena of quantum Riemannian geometry.

3 citations


Journal ArticleDOI
24 Feb 2023
TL;DR: In this article , the authors investigated the conformally invariant presymplectic potential current obtained from the Yang-Mills theory and found that on the solutions to the Einstein field equations, it can be decomposed into a topological term derived from the Euler density and a part proportional to the potential of the standard Einstein-Hilbert Lagrangian.
Abstract: It is known that a source-free Yang-Mills theory with the normal conformal Cartan connection used as the gauge potential gives rise to equations of motion equivalent to the vanishing of the Bach tensor. We investigate the conformally invariant presymplectic potential current obtained from this theory and find that on the solutions to the Einstein field equations, it can be decomposed into a topological term derived from the Euler density and a part proportional to the potential of the standard Einstein-Hilbert Lagrangian. The pullback of our potential to the asymptotic boundary of asymptotically de Sitter spacetimes turns out to coincide with the current obtained from the holographically renormalized gravitational action. This provides an alternative derivation of a symplectic structure on scri without resorting to holographic techniques. We also calculate our current at the null infinity of asymptotically flat spacetimes and in particular show that it vanishes for variations induced by the BMS symmetries. In addition, we calculate the Noether currents and charges corresponding to gauge transformations and diffeomorphisms.