scispace - formally typeset
Search or ask a question

Showing papers by "Jimmy K. Eng published in 1999"


Journal ArticleDOI
TL;DR: A rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography and tandem mass spectrometry to separate and fragment peptides is described.
Abstract: We describe a rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and fragment peptides. The SEQUEST algorithm, relying upon translated genomic sequences, infers amino acid sequences from the fragment ions. The method was applied to the Saccharomyces cerevisiae ribosome leading to the identification of a novel protein component of the yeast and human 40S subunit. By offering the ability to identify >100 proteins in a single run, this process enables components in even the largest macromolecular complexes to be analyzed comprehensively.

2,236 citations


Journal ArticleDOI
TL;DR: This approach improves the concentration detection limit for CE and allows more proteins in complex mixtures to be identified, and provides an alternative to multidimensional liquid chromatography/MS/MS for direct identification of small amounts of protein in mixtures.
Abstract: A method to directly identify proteins in complex mixtures by solid-phase microextraction (micro-SPE)/multistep elution/capillary electrophoresis (CE)/tandem mass spectrometry (MS/MS) is described. A sheathless liquid-metal junction interface is used to interface CE and electrospray ionization MS/MS. A subfemtomole detection limit is achieved for protein identification through database searching using MS/MS data. The SPE serves as a semiseparation dimension using an organic-phase step-elution gradient in combination with the second separation dimension for increased resolving power of complex peptide mixtures. This approach improves the concentration detection limit for CE and allows more proteins in complex mixtures to be identified. A 75-protein complex from yeast ribosome is analyzed using this method and 80-90% of the proteins in the complex can be identified by searching the database using the MS/MS data from a complete analysis. This multidimensional CE/MS/MS methodology provides an alternative to multidimensional liquid chromatography/MS/MS for direct identification of small amounts of protein in mixtures.

138 citations