scispace - formally typeset
Search or ask a question

Showing papers by "Johan Vallon-Christersson published in 2010"


Journal ArticleDOI
TL;DR: It is found that breast cancers of the basal-like, luminal A and luminal B molecular subtypes harbour specific methylation profiles, suggesting that methylation may play an important role in the development of breast cancers.
Abstract: Introduction: Five different molecular subtypes of breast cancer have been identified through gene expression profiling. Each subtype has a characteristic expression pattern suggested to partly depend on cellular origin. We aimed to investigate whether the molecular subtypes also display distinct methylation profiles. Methods: We analysed methylation status of 807 cancer-related genes in 189 fresh frozen primary breast tumours and four normal breast tissue samples using an array-based methylation assay. Results: Unsupervised analysis revealed three groups of breast cancer with characteristic methylation patterns. The three groups were associated with the luminal A, luminal B and basal-like molecular subtypes of breast cancer, respectively, whereas cancers of the HER2-enriched and normal-like subtypes were distributed among the three groups. The methylation frequencies were significantly different between subtypes, with luminal B and basal-like tumours being most and least frequently methylated, respectively. Moreover, targets of the polycomb repressor complex in breast cancer and embryonic stem cells were more methylated in luminal B tumours than in other tumours. BRCA2-mutated tumours had a particularly high degree of methylation. Finally, by utilizing gene expression data, we observed that a large fraction of genes reported as having subtype-specific expression patterns might be regulated through methylation. Conclusions: We have found that breast cancers of the basal-like, luminal A and luminal B molecular subtypes harbour specific methylation profiles. Our results suggest that methylation may play an important role in the development of breast cancers.

271 citations


Journal ArticleDOI
TL;DR: Global DNA copy number analysis integrated with gene-expression data can be used to dissect the complexity of breast cancer and reveal six genomic subtypes with different clinical behavior and a striking concordance to the intrinsic subtypes, which may prove useful for understanding the mechanisms of tumor development and for prognostic and treatment prediction purposes.
Abstract: Breast cancer is a profoundly heterogeneous disease with respect to biologic and clinical behavior. Gene-expression profiling has been used to dissect this complexity and to stratify tumors into intrinsic gene-expression subtypes, associated with distinct biology, patient outcome, and genomic alterations. Additionally, breast tumors occurring in individuals with germline BRCA1 or BRCA2 mutations typically fall into distinct subtypes. We applied global DNA copy number and gene-expression profiling in 359 breast tumors. All tumors were classified according to intrinsic gene-expression subtypes and included cases from genetically predisposed women. The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was used to identify significant DNA copy-number aberrations and genomic subgroups of breast cancer. We identified 31 genomic regions that were highly amplified in > 1% of the 359 breast tumors. Several amplicons were found to co-occur, the 8p12 and 11q13.3 regions being the most frequent combination besides amplicons on the same chromosomal arm. Unsupervised hierarchical clustering with 133 significant GISTIC regions revealed six genomic subtypes, termed 17q12, basal-complex, luminal-simple, luminal-complex, amplifier, and mixed subtypes. Four of them had striking similarity to intrinsic gene-expression subtypes and showed associations to conventional tumor biomarkers and clinical outcome. However, luminal A-classified tumors were distributed in two main genomic subtypes, luminal-simple and luminal-complex, the former group having a better prognosis, whereas the latter group included also luminal B and the majority of BRCA2-mutated tumors. The basal-complex subtype displayed extensive genomic homogeneity and harbored the majority of BRCA1-mutated tumors. The 17q12 subtype comprised mostly HER2-amplified and HER2-enriched subtype tumors and had the worst prognosis. The amplifier and mixed subtypes contained tumors from all gene-expression subtypes, the former being enriched for 8p12-amplified cases, whereas the mixed subtype included many tumors with predominantly DNA copy-number losses and poor prognosis. Global DNA copy-number analysis integrated with gene-expression data can be used to dissect the complexity of breast cancer. This revealed six genomic subtypes with different clinical behavior and a striking concordance to the intrinsic subtypes. These genomic subtypes may prove useful for understanding the mechanisms of tumor development and for prognostic and treatment prediction purposes.

182 citations


Journal ArticleDOI
TL;DR: The Her2-derived prognostic predictor provides further insight into the heterogeneous biology of HER2-positive tumors and may become useful for improved selection of patients who need additional treatment with new drugs targeting the HER2 pathway.
Abstract: PURPOSE Human epidermal growth factor receptor 2 (HER2) gene amplification or protein overexpression (HER2 positivity) defines a clinically challenging subgroup of patients with breast cancer (BC) with variable prognosis and response to therapy. We aimed to investigate the heterogeneous biologic appearance and clinical behavior of HER2-positive tumors using molecular profiling. PATIENTS AND METHODS Hierarchical clustering of gene expression data from 58 HER2-amplified tumors of various stage, histologic grade, and estrogen receptor (ER) status was used to construct a HER2-derived prognostic predictor that was further evaluated in several large independent BC data sets. RESULTS Unsupervised analysis identified three subtypes of HER2-positive tumors with mixed stage, histologic grade, and ER status. One subtype had a significantly worse clinical outcome. A prognostic predictor was created based on differentially expressed genes between the subtype with worse outcome and the other subtypes. The predictor was able to define patient groups with better and worse outcome in HER2-positive BC across multiple independent BC data sets and identify a sizable HER2-positive group with long disease-free survival and low mortality. Significant correlation to prognosis was also observed in basal-like, ER-negative, lymph node-positive, and high-grade tumors, irrespective of HER2 status. The predictor included genes associated with immune response, tumor invasion, and metastasis. CONCLUSION The HER2-derived prognostic predictor provides further insight into the heterogeneous biology of HER2-positive tumors and may become useful for improved selection of patients who need additional treatment with new drugs targeting the HER2 pathway.

157 citations


Journal ArticleDOI
TL;DR: A comprehensive survey of CNAs in HER2+ breast tumors is performed, pinpointing significant genomic alterations including both known and potentially novel therapeutic targets, which sheds further light on the genomically complex and heterogeneous nature of HER2- tumors in relation to other subgroups of breast cancer.
Abstract: Introduction HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets.

136 citations


Journal ArticleDOI
TL;DR: Tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down- regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinIMods therapeutic potential.
Abstract: The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8), which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR) and protein expression techniques. One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1). The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR) and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target) in the tumors from tasquinimod treated mice. We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

84 citations


01 Jan 2010
TL;DR: In this paper, the authors investigated the effect of tasquinimod-induced up-regulation of thrombospondin-1 (TSP1) mRNA in LNCaP prostate tumor cells.
Abstract: Background: The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8), which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR) and protein expression techniques. Results: One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1). The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR) and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an antiangiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target) in the tumors from tasquinimod treated mice. Conclusions: We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving downregulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

75 citations


Journal ArticleDOI
TL;DR: Microarray-based comparative genomic hybridization, gene expression and CpG island methylation analysis of primary tumors and multiple metastases from five melanoma patients provided evidence for different models of metastatic progression in melanoma.
Abstract: Disseminated melanoma is an aggressive disease with fatal outcome. Better understanding of the underlying biology is needed to find effective treatment. We applied microarray-based comparative genomic hybridization, gene expression and CpG island methylation analysis of primary tumors and multiple metastases from five melanoma patients with the aim of analyzing the molecular patterns of melanoma progression. Epigenetic profiling showed that the multiple metastases after a single primary melanoma share similar methylation patterns for many genes, although differences in methylation between the lesions were evident for several genes, example, PTEN, TFAP2C, and RARB. In addition, DNA copy number and global gene expression profiles of tumors from individual patients were highly similar, confirming common origin of metastases. Some of the identified genomic aberrations, for example, gain of chromosome 6p and loss of chromosomes 6q and 10, persisted during progression, indicating early changes highly important for melanoma development. Homozygous deletions at 3p26.1 and 6q23.2-q23.3 appeared in two consecutive metastases originating from the same primary tumor, respectively, in a mutually exclusive manner that provides evidence for two genetically different subclones. However, in another case, the similarity of the copy number aberrations in subsequent metastatic lesions suggests sequential metastatic development through the clonal evolution. These data are further corroborated by a switch in CDH1 and CDH2 expression between metastases from the same patient. In conclusion, our results provide evidence for different models of metastatic progression in melanoma.

29 citations