Institution
University of Iceland
Education•Reykjavik, Suðurnes, Iceland•
About: University of Iceland is a(n) education organization based out in Reykjavik, Suðurnes, Iceland. It is known for research contribution in the topic(s): Population & Genome-wide association study. The organization has 5423 authors who have published 16199 publication(s) receiving 694762 citation(s). The organization is also known as: Háskóli Íslands.
Papers published on a yearly basis
Papers
More filters
[...]
Wellcome Trust Sanger Institute1, Wellcome Trust2, Cambridge University Hospitals NHS Foundation Trust3, University of British Columbia4, University of Cambridge5, Oslo University Hospital6, The Breast Cancer Research Foundation7, University of Oslo8, University of Münster9, Université libre de Bruxelles10, German Cancer Research Center11, University of Iceland12, Erasmus University Rotterdam13, Paris Descartes University14, French Institute of Health and Medical Research15, University of Paris16, Broad Institute17, University of Bergen18, University of Oviedo19, University of Queensland20, University of Glasgow21, Harvard University22, United States Department of Veterans Affairs23, Netherlands Cancer Institute24, University of Kiel25, Radboud University Nijmegen26, King's College London27, Curie Institute28, University of New South Wales29, Bankstown Lidcombe Hospital30, University of Barcelona31
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
6,464 citations
[...]
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.
5,812 citations
[...]
TL;DR: In this article, an algorithm for decomposition of electronic charge density into atomic contributions is presented. But instead of explicitly finding and representing the dividing surfaces, which is a challenging task, the algorithm assigns each point on a regular (x,y,z) grid to one of the regions by following a steepest ascent path on the grid.
Abstract: An algorithm is presented for carrying out decomposition of electronic charge density into atomic contributions. As suggested by Bader [R. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990], space is divided up into atomic regions where the dividing surfaces are at a minimum in the charge density, i.e. the gradient of the charge density is zero along the surface normal. Instead of explicitly finding and representing the dividing surfaces, which is a challenging task, our algorithm assigns each point on a regular (x,y,z) grid to one of the regions by following a steepest ascent path on the grid. The computational work required to analyze a given charge density grid is approximately 50 arithmetic operations per grid point. The work scales linearly with the number of grid points and is essentially independent of the number of atoms in the system. The algorithm is robust and insensitive to the topology of molecular bonding. In addition to two test problems involving a water molecule and NaCl crystal, the algorithm has been used to estimate the electrical activity of a cluster of boron atoms in a silicon crystal. The highly stable three-atom boron cluster, B3I is found to have a charge of ! 1.5 e, which suggests approximately 50% reduction in electrical activity as compared with three substitutional boron atoms.
5,741 citations
[...]
TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Abstract: We present a method for calculating the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations. We used that method in combination with detailed density functional calculations to develop a detailed description of the free-energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias. This allowed us to identify the origin of the overpotential found for this reaction. Adsorbed oxygen and hydroxyl are found to be very stable intermediates at potentials close to equilibrium, and the calculated rate constant for the activated proton/electron transfer to adsorbed oxygen or hydroxyl can account quantitatively for the observed kinetics. On the basis of a database of calculated oxygen and hydroxyl adsorption energies, the trends in the oxygen reduction rate for a large number of different transition and noble metals can be accounted for. Alternative reaction mechanisms involving proton/electron transfer to ...
5,473 citations
[...]
TL;DR: Kallisto pseudoaligns reads to a reference, producing a list of transcripts that are compatible with each read while avoiding alignment of individual bases, which removes a major computational bottleneck in RNA-seq analysis.
Abstract: We present kallisto, an RNA-seq quantification program that is two orders of magnitude faster than previous approaches and achieves similar accuracy. Kallisto pseudoaligns reads to a reference, producing a list of transcripts that are compatible with each read while avoiding alignment of individual bases. We use kallisto to analyze 30 million unaligned paired-end RNA-seq reads in <10 min on a standard laptop computer. This removes a major computational bottleneck in RNA-seq analysis.
4,396 citations
Authors
Showing all 5423 results
Name | H-index | Papers | Citations |
---|---|---|---|
Albert Hofman | 267 | 2530 | 321405 |
Kari Stefansson | 206 | 794 | 174819 |
Ronald Klein | 194 | 1305 | 149140 |
Eric Boerwinkle | 183 | 1321 | 170971 |
Unnur Thorsteinsdottir | 167 | 444 | 121009 |
Vilmundur Gudnason | 159 | 837 | 123802 |
Hakon Hakonarson | 152 | 968 | 101604 |
Bernhard O. Palsson | 147 | 831 | 85051 |
Andrew T. Hattersley | 146 | 768 | 106949 |
Fernando Rivadeneira | 146 | 628 | 86582 |
Rattan Lal | 140 | 1383 | 87691 |
Jonathan G. Seidman | 137 | 563 | 89782 |
Christine E. Seidman | 134 | 519 | 67895 |
Augustine Kong | 134 | 237 | 89818 |
Timothy M. Frayling | 133 | 500 | 100344 |