scispace - formally typeset
Search or ask a question

Showing papers by "John Porrill published in 2009"


Journal ArticleDOI
01 Dec 2009
TL;DR: The results show that this model of neural function successfully works on a real-world problem, providing empirical evidence for validating: 1) the generic cerebellar learning algorithm; 2) the function of the cerebellum in the VOR; and 3) the signal transmission between functional neural components of the VORN.
Abstract: In this paper, a model of cerebellar function is implemented and evaluated in the control of a robot eye actuated by pneumatic artificial muscles. The investigated control problem is stabilization of the visual image in response to disturbances. This is analogous to the vestibuloocular reflex (VOR) in humans. The cerebellar model is structurally based on the adaptive filter, and the learning rule is computationally analogous to least-mean squares, where parameter adaptation at the parallel fiber/Purkinje cell synapse is driven by the correlation of the sensory error signal (carried by the climbing fiber) and the motor command signal. Convergence of the algorithm is first analyzed in simulation on a model of the robot and then tested online in both one and two degrees of freedom. The results show that this model of neural function successfully works on a real-world problem, providing empirical evidence for validating: 1) the generic cerebellar learning algorithm; 2) the function of the cerebellum in the VOR; and 3) the signal transmission between functional neural components of the VOR.

59 citations


Journal ArticleDOI
TL;DR: This work describes a non-parametric maximum-likelihood estimation method for finding the prior distribution for lighting direction, and suggests that each observer has a distinct prior distribution, with non-zero values in all directions, but with a peak which indicates observers are biased to expect light to come from above left.
Abstract: Perception of shaded three-dimensional figures is inherently ambiguous, but this ambiguity can be resolved if the brain assumes that figures are lit from a specific direction. Under the Bayesian framework, the visual system assigns a weighting to each possible direction, and these weightings define a prior probability distribution for light-source direction. Here, we describe a non-parametric maximum-likelihood estimation method for finding the prior distribution for lighting direction. Our results suggest that each observer has a distinct prior distribution, with non-zero values in all directions, but with a peak which indicates observers are biased to expect light to come from above left. The implications of these results for estimating general perceptual priors are discussed.

27 citations


Journal ArticleDOI
TL;DR: Primate plant dynamics were investigated by measuring the eye movements produced by stimulating the abducens nucleus with brief pulse trains of varying frequency, suggesting that the dynamics of the oculomotor plant have an approximately linear component related to steady-state viscoelasticity and a nonlinear componentrelated to changes in muscle activation.
Abstract: Despite their importance for deciphering oculomotor commands, the mechanics of the extraocular muscles and orbital tissues (oculomotor plant) are poorly understood. In particular, the significance of plant nonlinearities is uncertain. Here primate plant dynamics were investigated by measuring the eye movements produced by stimulating the abducens nucleus with brief pulse trains of varying frequency. Statistical analysis of these movements indicated that the effects of stimulation lasted about 40 ms after the final pulse, after which the eye returned passively toward its position before stimulation. Behavior during the passive phase could be approximated by a linear plant model, corresponding to Voigt elements in series, with properties independent of initial eye position. In contrast, behavior during the stimulation phase revealed a sigmoidal relation between stimulation frequency and estimated steady-state tetanic tension, together with a frequency-dependent rate of tension increase, that appeared very similar to the nonlinearities previously found for isometric-force production in primate lateral rectus muscle. These results suggest that the dynamics of the oculomotor plant have an approximately linear component related to steady-state viscoelasticity and a nonlinear component related to changes in muscle activation. The latter may in part account for the nonlinear relations observed between eye-movement parameters and single-unit firing patterns in the abducens nucleus. These findings point to the importance of recruitment as a simplifying factor for motor control with nonlinear plants.

23 citations


Journal ArticleDOI
TL;DR: Regularities suggest that recruitment does take place in the retractor bulbi muscle during conditioned NM responses and that all motoneurons receive the same command signal (common-drive hypothesis), and a model of the motoneuron pool was constructed in which mot oneurons had a range of intrinsic thresholds distributed exponentially, with threshold linearly related to EMG spike amplitude.
Abstract: To analyze properly the role of the cerebellum in classical conditioning of the eyeblink and nictitating membrane (NM) response, the control of conditioned response dynamics must be better understood. Previous studies have suggested that the control signal is linearly related to the CR as a result of recruitment within the accessory abducens motoneuron pool, which acts to linearize retractor bulbi muscle and NM response mechanics. Here we investigate possible recruitment mechanisms. Data came from simultaneous recordings of NM position and multiunit electromyographic (EMG) activity from the retractor bulbi muscle of rabbits during eyeblink conditioning, in which tone and periocular shock act as conditional and unconditional stimuli, respectively. Action potentials (spikes) were extracted and classified by amplitude. Firing rates of spikes with different amplitudes were analyzed with respect to NM response temporal profiles and total EMG spike firing rate. Four main regularities were revealed and quantified: 1) spike amplitude increased with response amplitude; 2) smaller spikes always appeared before larger spikes; 3) subsequent firing rates covaried for spikes of different amplitude, with smaller spikes always firing at higher rates than larger ones; and 4) firing-rate profiles were approximately Gaussian for all amplitudes. These regularities suggest that recruitment does take place in the retractor bulbi muscle during conditioned NM responses and that all motoneurons receive the same command signal (common-drive hypothesis). To test this hypothesis, a model of the motoneuron pool was constructed in which motoneurons had a range of intrinsic thresholds distributed exponentially, with threshold linearly related to EMG spike amplitude. Each neuron received the same input signal as required by the common-drive assumption. This simple model reproduced the main features of the data, suggesting that conditioned NM responses are controlled by a common-drive mechanism that enables simple commands to determine response topography in a linear fashion.

13 citations