scispace - formally typeset
Search or ask a question
Author

John R. P. French

Bio: John R. P. French is an academic researcher from University of Michigan. The author has contributed to research in topics: Mental health & Social support. The author has an hindex of 18, co-authored 24 publications receiving 9618 citations.


Cited by
More filters
Journal ArticleDOI
TL;DR: The Unified Theory of Acceptance and Use of Technology (UTAUT) as mentioned in this paper is a unified model that integrates elements across the eight models, and empirically validate the unified model.
Abstract: Information technology (IT) acceptance research has yielded many competing models, each with different sets of acceptance determinants. In this paper, we (1) review user acceptance literature and discuss eight prominent models, (2) empirically compare the eight models and their extensions, (3) formulate a unified model that integrates elements across the eight models, and (4) empirically validate the unified model. The eight models reviewed are the theory of reasoned action, the technology acceptance model, the motivational model, the theory of planned behavior, a model combining the technology acceptance model and the theory of planned behavior, the model of PC utilization, the innovation diffusion theory, and the social cognitive theory. Using data from four organizations over a six-month period with three points of measurement, the eight models explained between 17 percent and 53 percent of the variance in user intentions to use information technology. Next, a unified model, called the Unified Theory of Acceptance and Use of Technology (UTAUT), was formulated, with four core determinants of intention and usage, and up to four moderators of key relationships. UTAUT was then tested using the original data and found to outperform the eight individual models (adjusted R2 of 69 percent). UTAUT was then confirmed with data from two new organizations with similar results (adjusted R2 of 70 percent). UTAUT thus provides a useful tool for managers needing to assess the likelihood of success for new technology introductions and helps them understand the drivers of acceptance in order to proactively design interventions (including training, marketing, etc.) targeted at populations of users that may be less inclined to adopt and use new systems. The paper also makes several recommendations for future research including developing a deeper understanding of the dynamic influences studied here, refining measurement of the core constructs used in UTAUT, and understanding the organizational outcomes associated with new technology use.

27,798 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed and tested a theoretical extension of the TAM model that explains perceived usefulness and usage intentions in terms of social influence and cognitive instrumental processes, which was tested using longitudinal data collected regarding four different systems at four organizations (N = 156), two involving voluntary usage and two involving mandatory usage.
Abstract: The present research develops and tests a theoretical extension of the Technology Acceptance Model (TAM) that explains perceived usefulness and usage intentions in terms of social influence and cognitive instrumental processes. The extended model, referred to as TAM2, was tested using longitudinal data collected regarding four different systems at four organizations ( N = 156), two involving voluntary usage and two involving mandatory usage. Model constructs were measured at three points in time at each organization: preimplementation, one month postimplementation, and three months postimplementation. The extended model was strongly supported for all four organizations at all three points of measurement, accounting for 40%--60% of the variance in usefulness perceptions and 34%--52% of the variance in usage intentions. Both social influence processes (subjective norm, voluntariness, and image) and cognitive instrumental processes (job relevance, output quality, result demonstrability, and perceived ease of use) significantly influenced user acceptance. These findings advance theory and contribute to the foundation for future research aimed at improving our understanding of user adoption behavior.

16,513 citations

Journal ArticleDOI
Sidney Cobb1
TL;DR: It appears that social support can protect people in crisis from a wide variety of pathological states: from low birth weight to death, from arthritis through tuberculosis to depression, alcoholism, and the social breakdown syndrome.
Abstract: Social support is defined as information leading the subject to believe that he is cared for and loved, esteemed, and a member of a network of mutual obligations. The evidence that supportive interactions among people are protective against the health consequences of life stress is reviewed. It appears that social support can protect people in crisis from a wide variety of pathological states: from low birth weight to death, from arthritis through tuberculosis to depression, alcoholism, and the social breakdown syndrome. Furthermore, social support may reduce the amount of medication required, accelerate recovery, and facilitate compliance with prescribed medical regimens.

6,113 citations