scispace - formally typeset
Search or ask a question

Showing papers by "John Simonsen published in 2007"


Journal ArticleDOI
TL;DR: In this paper, the feasibility of incorporating cellulose nanocrystals (CNXLs) into polysulfone, a commonly used ultrafiltration membrane polymer, has been investigated, and a solvent exchange process was developed that successfully transferred an aqueous CNXL dispersion into the organic solvent N-methylpyrrolidone (NMP).
Abstract: Microchannel devices hold the potential to transform many separation processes. This preliminary study investigated the feasibility of incorporating cellulose nanocrystals (CNXLs) into polysulfone, a commonly used ultrafiltration membrane polymer. Incorporating CNXLs into non-water soluble polymers without aggregation has been problematic. A solvent exchange process was developed that successfully transferred an aqueous CNXL dispersion into the organic solvent N-methylpyrrolidone (NMP), which is a solvent for polysulfone (PSf). Films were prepared from the solution of PSf in NMP with dispersed CNXLs by a phase inversion process. Films were then examined by scanning electron microscopy and tested for their transport and mechanical properties. The interaction between the polymer matrix and the CNXL filler was studied by means of thermogravimetric analysis (TGA), which suggested a close interaction between the polymer and filler at the 2% filler loading. The tensile modulus showed a large increase beyond 1% filler loading, which could be due to a percolation effect. The water vapor transport rate increased with increase in filler loading. Agglomeration of the CNXLs seemed to be taking place at filler loadings >7%.

57 citations


Journal ArticleDOI
TL;DR: In this article, the effect of adding 1% (by wt.) gold nano-particles on the tensile properties of wood/high-density polyethylene composites was addressed.
Abstract: Abstract Wood plastic composites (WPCs) are typically composed of wood particles, thermoplastic polymers and small amounts of additives. Further improvement of WPC technology requires a better understanding of their mechanical performance and durability on the micro level. X-ray computed tomography (CT) and advanced imaging techniques can provide visualization and support characterization of the internal structure, deformation and damage accumulation in WPCs under loading and various environmental exposures. However, both wood and thermoplastics are weakly attenuating materials for X-ray and good contrast between these two components is difficult to obtain. In the present study, chemically inert gold nano-particles and micro-particles were investigated as contrast agents to improve X-ray CT scanning contrast between wood and thermoplastics. The effect of adding 1% (by wt.) gold nano- and micro-particles on the tensile properties of wood/high-density polyethylene composites was addressed. Samples with and without surfactant were tested in tension and scanned on a custom desktop X-ray CT system. It was found that the addition of gold particles did not impair the WPC tensile properties. However, some of the tensile properties were significantly affected if the surfactant was included. Gold micro-particles were shown to disperse well without surfactant and significantly improve the X-ray CT scanning contrast between wood and polymer, while gold nano-particles (without surfactant) did not disperse well and do not contribute to contrast improvement.

16 citations


Journal ArticleDOI
TL;DR: In this paper, the use of compatibilizers, or coupling agents, was investigated as a means of improving the dispersion of the cellulose filler in the HDPE matrix and the mechanical properties of the resulting composites.
Abstract: High density polyethylene (HDPE) is a ubiquitous material with versatile properties. It is produced and used in greater volume than any other thermoplastic. HDPE is often filled with a variety of materials for various applications. Glass fiber and wood flour are two common fillers for HDPE. This study investigated microcrystalline cellulose (MCC) as a filler in HDPE. The use of compatibilizers, or coupling agents, was investigated as a means of improving the dispersion of the cellulose filler in the HDPE matrix and the mechanical properties of the resulting composites. One compatibilizer was shown to improve the strength of the resulting composite. The stiffness was unaffected, as expected. Thermal properties were measured by means of differential scanning calorimetry. Analysis of the crystallization kinetics indicated that the Avrami coefficient was altered by the filler and was also modified by the presence of the compatibilizer. The presence of cellulose and/or compatibilizer increased the matrix degre...

13 citations