scispace - formally typeset
Search or ask a question

Showing papers by "Jorja G. Henikoff published in 2005"


Journal ArticleDOI
TL;DR: It is proposed that deposition and inheritance of actively modified H3.3 in regulatory regions maintains transcriptionally active chromatin and is introduced a new strategy for profiling epigenetic patterns on the basis of H 3.3 replacement.
Abstract: Histones of multicellular organisms are assembled into chromatin primarily during DNA replication. When chromatin assembly occurs at other times, the histone H3.3 variant replaces canonical H3. Here we introduce a new strategy for profiling epigenetic patterns on the basis of H3.3 replacement, using microarrays covering roughly one-third of the Drosophila melanogaster genome at 100-bp resolution. We identified patterns of H3.3 replacement over active genes and transposons. H3.3 replacement occurred prominently at sites of abundant RNA polymerase II and methylated H3 Lys4 throughout the genome and was enhanced on the dosage-compensated male X chromosome. Active genes were depleted of histones at promoters and were enriched in H3.3 from upstream to downstream of transcription units. We propose that deposition and inheritance of actively modified H3.3 in regulatory regions maintains transcriptionally active chromatin.

523 citations


Journal ArticleDOI
TL;DR: The appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotide within transcribed regions, implying that CG methylisation clusters have contributed profoundly to plant gene evolution.

221 citations


Journal ArticleDOI
TL;DR: It is concluded that the targets of both DNA methylation and histone H3K9 methylation pathways are transposable elements genome-wide, irrespective of element type and position.
Abstract: Background: DNA methylation occurs at preferred sites in eukaryotes. In Arabidopsis, DNA cytosine methylation is maintained by three subfamilies of methyltransferases with distinct substrate specificities and different modes of action. Targeting of cytosine methylation at selected loci has been found to sometimes involve histone H3 methylation and small interfering (si)RNAs. However, the relationship between different cytosine methylation pathways and their preferred targets is not known. Results: We used a microarray-based profiling method to explore the involvement of Arabidopsis CMT3 and DRM DNA methyltransferases, a histone H3 lysine-9 methyltransferase (KYP) and an Argonaute-related siRNA silencing component (AGO4) in methylating target loci. We found that KYP targets are also CMT3 targets, suggesting that histone methylation maintains CNG methylation genome-wide. CMT3 and KYP targets show similar proximal distributions that correspond to the overall distribution of transposable elements of all types, whereas DRM targets are distributed more distally along the chromosome. We find an inverse relationship between element size and loss of methylation in ago4 and drm mutants. Conclusion: We conclude that the targets of both DNA methylation and histone H3K9 methylation pathways are transposable elements genome-wide, irrespective of element type and position. Our findings also suggest that RNA-directed DNA methylation is required to silence isolated elements that may be too small to be maintained in a silent state by a chromatin-based mechanism alone. Thus, parallel pathways would be needed to maintain silencing of transposable elements.

125 citations