scispace - formally typeset
Search or ask a question

Showing papers by "Josep Salud published in 2012"


Journal ArticleDOI
TL;DR: Broadband dielectric spectroscopy has been used to study the molecular orientational dynamics of the glass-forming liquid crystal 1",7"-bis (4-cyanobiphenyl-4'-yl)heptane (CB7CB) over a wide temperature range of the twist-bend nematic phase, and the critical-like description via the dynamic scaling model seems to give quite good numerical fittings.
Abstract: Broadband dielectric spectroscopy spanning frequencies from 10−2 to 1.9 × 109 Hz has been used to study the molecular orientational dynamics of the glass-forming liquid crystal 1″,7″-bis (4-cyanobiphenyl-4′-yl)heptane (CB7CB) over a wide temperature range of the twist-bend nematic phase. In such a mesophase two different relaxation processes have been observed, as expected theoretically, to contribute to the imaginary part of the complex dielectric permittivity. For measurements on aligned samples, the processes contribute to the dielectric response to different extents depending on the orientation of the alignment axis (parallel or perpendicular) with respect to the probing electric field direction. The low-frequency relaxation mode (denoted by μ1) is attributed to a flip-flop motion of the dipolar groups parallel to the director. The high-frequency relaxation mode (denoted by μ2) is associated with precessional motions of the dipolar groups about the director. The μ1-and μ2-modes are predominant in the parallel and perpendicular alignments, respectively. Relaxation times for both modes in the different alignments have been obtained over a wide temperature range down to near the glass transition temperature. Different analytic functions used to characterize the temperature dependence of the relaxation times of the two modes are considered. Among them, the critical-like description via the dynamic scaling model seems to give not only quite good numerical fittings, but also provides a consistent physical picture of the orientational dynamics on approaching the glass transition.

24 citations