scispace - formally typeset
Search or ask a question

Showing papers by "Juan G. Restrepo published in 2011"


Journal ArticleDOI
TL;DR: A general theoretical approach to study the effects of network topology on dynamic range is developed, which quantifies the range of stimulus intensities resulting in distinguishable network responses and finds that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range.
Abstract: The collective dynamics of a network of coupled excitable systems in response to an external stimulus depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. When the largest eigenvalue is exactly one, the system is in a critical state and its dynamic range is maximized. Further, we examine higher order behavior of the steady state system, which predicts that networks with more homogeneous degree distributions should have higher dynamic range. Our analysis, confirmed by numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.

202 citations


Journal ArticleDOI
TL;DR: For the first time, a complete analytic description of the dynamics in the limit of a large number of oscillators is developed and used to quantify the degree of cluster synchrony, cluster asymmetry, and switching.
Abstract: We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction technique of Ott and Antonsen [Chaos 18, 037113 (2008)] and find an analytic description of the degree of cluster synchrony valid on a globally attracting manifold. Shaped by this manifold, there is an infinite family of steady-state distributions of oscillators, resulting in a high degree of multistability in the cluster asymmetry. We also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems displaying cluster synchrony can be used to encode and store data.

85 citations


Journal ArticleDOI
28 Jun 2011-Chaos
TL;DR: The effects of network topology on the response of networks of coupled discrete excitable systems to an external stochastic stimulus is studied and it is found that the steady state response amplitude is inversely proportional to the duration of refractoriness, which reduces the maximum attainable dynamic range.
Abstract: We study the effects of network topology on the response of networks of coupled discrete excitable systems to an external stochastic stimulus. We extend recent results that characterize the response in terms of spectral properties of the adjacency matrix by allowing distributions in the transmission delays and in the number of refractory states and by developing a nonperturbative approximation to the steady state network response. We confirm our theoretical results with numerical simulations. We find that the steady state response amplitude is inversely proportional to the duration of refractoriness, which reduces the maximum attainable dynamic range. We also find that transmission delays alter the time required to reach steady state. Importantly, neither delays nor refractoriness impact the general prediction that criticality and maximum dynamic range occur when the largest eigenvalue of the adjacency matrix is unity.

46 citations


Proceedings ArticleDOI
TL;DR: It is shown that, in a practical cellular system, the installation of additional wireless networks with low power BSs over the already existing macrocell network will always improve the CINR performance at the MS.
Abstract: This paper studies the carrier-to-interference ratio (CIR) and carrier-to-interference-plus-noise ratio (CINR) performance at the mobile station (MS) within a multi-tier network composed of M tiers of wireless networks, with each tier modeled as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun cellular system, where the base station (BS) distribution is given by the homogeneous Poisson point process in n-D. The CIR and CINR at the MS in a single tier network are thoroughly analyzed to simplify the analysis of the multi-tier network. For the multi-tier network with given system parameters, the following are the main results of this paper: (1) semi-analytical expressions for the tail probabilities of CIR and CINR; (2) a closed form expression for the tail probability of CIR in the range [1,Infinity); (3) a closed form expression for the tail probability of an approximation to CIR in the entire range [0,Infinity); (4) a lookup table based approach for obtaining the tail probability of CINR, and (5) the study of the effect of shadow fading and BSs with ideal sectorized antennas on the CIR and CINR. Based on these results, it is shown that, in a practical cellular system, the installation of additional wireless networks (microcells, picocells and femtocells) with low power BSs over the already existing macrocell network will always improve the CINR performance at the MS.

40 citations


Journal ArticleDOI
24 Jun 2011-Chaos
TL;DR: In this paper, the authors consider systems of many spatially distributed phase oscillators that interact with their neighbors, and they reduce the microscopic dynamics of these systems to a macroscopic partial-differential-equation description.
Abstract: We consider systems of many spatially distributed phase oscillators that interact with their neighbors. Each oscillator is allowed to have a different natural frequency, as well as a different response time to the signals it receives from other oscillators in its neighborhood. Using the ansatz of Ott and Antonsen [Chaos 18, 037113 (2008)] and adopting a strategy similar to that employed in the recent work of Laing [Physica D 238, 1569 (2009)], we reduce the microscopic dynamics of these systems to a macroscopic partial-differential-equation description. Using this macroscopic formulation, we numerically find that finite oscillator response time leads to interesting spatiotemporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae, spiral waves, etc., and we study interactions and evolutionary behaviors of these spatiotemporal patterns.

40 citations


Proceedings ArticleDOI
01 Dec 2011
TL;DR: In this article, the authors studied the performance of CIR and CINR at the mobile station (MS) within a multi-tier network composed of M tiers of wireless networks, with each tier modeled as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun cellular system, where the base station (BS) distribution is given by homogeneous Poisson point process in n-D.
Abstract: --- This paper studies the carrier-to-interference ratio (CIR) and carrier-to-interference-plus-noise ratio (CINR) performance at the mobile station (MS) within a multi-tier network composed of M tiers of wireless networks, with each tier modeled as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun cellular system, where the base station (BS) distribution is given by the homogeneous Poisson point process in n-D. The CIR and CINR at the MS in a single tier network are thoroughly analyzed to simplify the analysis of the multi-tier network. For the multi-tier network with given system parameters, the following are the main results of this paper: (1) semi-analytical expressions for the tail probabilities of CIR and CINR; (2) a closed form expression for the tail probability of CIR in the range [1,infinity); (3) a closed form expression for the tail probability of an approximation to CINR in the entire range [0,infinity); (4) a lookup table based approach for obtaining the tail probability of CINR, and (5) the study of the effect of shadow fading and BSs with ideal sectorized antennas on the CIR and CINR. Based on these results, it is shown that, in a practical cellular system, the installation of additional wireless networks (microcells, picocells and femtocells) with low power BSs over the already existing macrocell network will always improve the CINR performance at the MS.

39 citations


Journal ArticleDOI
TL;DR: Using the ansatz of Ott and Antonsen and adopting a strategy similar to that employed in the recent work of Laing, this work numerically finds that finite oscillator response time leads to interesting spatiotemporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae, spiral waves, etc.
Abstract: We consider systems of many spatially distributed phase oscillators that interact with their neighbors. Each oscillator is allowed to have a different natural frequency, as well as a different response time to the signals it receives from other oscillators in its neighborhood. Using the ansatz of Ott and Antonsen (Ref. \cite{OA1}) and adopting a strategy similar to that employed in the recent work of Laing (Ref. \cite{Laing2}), we reduce the microscopic dynamics of these systems to a macroscopic partial-differential-equation description. Using this macroscopic formulation, we numerically find that finite oscillator response time leads to interesting spatio-temporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae, spiral waves, etc., and we study interactions and evolutionary behaviors of these spatio-temporal patterns.

34 citations


Journal ArticleDOI
TL;DR: The principal eigenvalue λ of a network's adjacency matrix often determines dynamics on the network and some of its structural properties and is a good indicator for how "strongly" a network is connected.
Abstract: The principal eigenvalue λ of a network's adjacency matrix often determines dynamics on the network (e.g., in synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or attack) and is therefore a good indicator for how "strongly" a network is connected. We study how λ is modified by the addition of a module, or community, which has broad applications, ranging from those involving a single modification (e.g., introduction of a drug into a biological process) to those involving repeated additions (e.g., power-grid and transit development). We describe how to optimally connect the module to the network to either maximize or minimize the shift in λ, noting several applications of directing dynamics on networks.

20 citations


Journal ArticleDOI
TL;DR: In this article, a simple analytical tool based on stochastic ordering is developed to compare the distributions of carrier-to-interference ratio at the mobile station of two cellular systems where the base stations are distributed randomly according to certain nonhomogeneous Poisson point processes.
Abstract: A simple analytical tool based on stochastic ordering is developed to compare the distributions of carrier-to-interference ratio at the mobile station of two cellular systems where the base stations are distributed randomly according to certain non-homogeneous Poisson point processes. The comparison is conveniently done by studying only the base station densities without having to solve for the distributions of the carrier-to-interference ratio, that are often hard to obtain.

11 citations


Journal ArticleDOI
TL;DR: The proposed network-specific method to determine the connectivity of nodes below the percolation threshold predicts the effects of many known complex structures and may be used to study both probabilistic and deterministic attacks.
Abstract: Methods for determining the percolation threshold usually study the behavior of network ensembles and are often restricted to a particular type of probabilistic node/link removal strategy. We propose a network-specific method to determine the connectivity of nodes below the percolation threshold and offer an estimate to the percolation threshold in networks with bidirectional links. Our analysis does not require the assumption that a network belongs to a specific ensemble and can at the same time easily handle arbitrary removal strategies (previously an open problem for undirected networks). In validating our analysis, we find that it predicts the effects of many known complex structures (e.g., degree correlations) and may be used to study both probabilistic and deterministic attacks.

7 citations


Posted Content
23 Feb 2011
TL;DR: This work studies how $\lambda$ is modified by the addition of a subgraph and describes how to optimally connect the subgraph to the network to either maximize or minimize the shift in $\lambda$, noting several applications.
Abstract: The principal eigenvalue $\lambda$ of a network's adjacency matrix often determines dynamics on the network (e.g., in synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or attack), and is therefore a good indicator for how "strongly" a network is connected. We study how $\lambda$ is modified by the addition of a subgraph. This type of modification has broad applications, ranging from those involving a single modification (e.g., introduction of a drug into a biological process) to those involving repeated subnetwork additions (e.g., power-grid and transit development). We describe how to optimally connect the subgraph to the network to either maximize or minimize the shift in $\lambda$, noting several applications.