scispace - formally typeset
Search or ask a question

Showing papers by "Julio A. Aguirre-Ghiso published in 2009"


Journal ArticleDOI
TL;DR: The data indicate that bortezomib can induce growth arrest in therapy-surviving MM cells and that attenuation of eIF2alpha phosphorylation contributes to this survival, and this survival mechanism can be blocked by inhibiting eif2alpha dephosphorylation.
Abstract: The proteasome inhibitor bortezomib (Velcade) effectively eradicates multiple myeloma (MM) cells, partly by activating endoplasmic reticulum (ER) stress apoptotic signaling. However, MM recurrences in bortezomib-treated patients are invariable. We have shown that ER stress signaling can also induce growth arrest and survival in cancer cells. Thus, we hypothesized that bortezomib therapy could induce quiescence and survival of residual MM cells, contributing to disease recurrence. Here, we report that in MM cells, proteasome inhibition with MG-132 or bortezomib results in a surviving cell fraction that enters a prolonged quiescent state (G0-G1 arrest). Mechanism analysis revealed that bortezomib-surviving quiescent cells attenuate eIF2α phosphorylation and induction of the ER stress proapoptotic gene GADD153. This occurs independently of the eIF2α upstream kinases PERK, GCN2, and PKR. In contrast, the prosurvival ER-chaperone BiP/Grp78 was persistently induced. The bortezomib-surviving quiescent fraction could be eradicated by a simultaneous or sequential combination therapy with salubrinal, an inhibitor of GADD34-PP1C phosphatase complex, and, in consequence, eIF2α dephosphorylation. This effect was mimicked by expression of a phosphorylated mimetic eIF2α-S51D mutant. Our data indicate that bortezomib can induce growth arrest in therapy-surviving MM cells and that attenuation of eIF2α phosphorylation contributes to this survival. Most importantly, this survival mechanism can be blocked by inhibiting eIF2α dephosphorylation. Thus, strategies that maintain eIF2α in a hyperphosphorylated state may be a novel therapeutic approach to maximize bortezomib-induced apoptosis and reduce residual disease and recurrences in this type of cancer. [Cancer Res 2009;69(4):1545–52]

145 citations


Journal ArticleDOI
TL;DR: The results identify components of the regulatory mechanisms driving p38-induced cancer cell quiescence that may regulate dormancy of residual disease that usually precedes the onset of metastasis in many cancers.
Abstract: The stress activated kinase p38 plays key roles in tumor suppression and induction of tumor cell dormancy. However, the mechanisms behind these functions remain poorly understood. Using computational tools we identified a transcription factor (TF) network regulated by p38α/β and required for human squamous carcinoma cell quiescence in vivo. We found that p38 transcriptionally regulates a core network of 46 genes that includes 16 TFs. Activation of p38 induced the expression of the TFs p53 and BHLHB3, while inhibiting c-Jun and FoxM1 expression. Further, induction of p53 by p38 was dependent on c-Jun downregulation. Accordingly, while RNAi downregulation of BHLHB3 or p53 interrupted tumor cell quiescence; downregulation of c-Jun or FoxM1 or overexpression of BHLHB3 in malignant cells mimicked the onset of quiescence. Our results identify components of the regulatory mechanisms driving p38-induced cancer cell quiescence. These may regulate dormancy of residual disease that usually precedes the onset of metastasis in many cancers.

143 citations


Journal ArticleDOI
TL;DR: Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and eIF2 α phosphorylation and Treatments that stabilize P-eIF2α levels may be effective in treating Erb B2 positive cancers without severely disrupting normal tissue function and structure.
Abstract: The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in ~30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2α inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2α can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival. Here we explore whether ErbB2 modulates eIF2α phosphorylation and whether forced phosphorylation of the latter can antagonize ErbB2 deregulation of mammary acinar morphogenesis. We tested whether ErbB2 signaling influenced eIF2α signaling and whether enhanced phosphorylation of the latter affected ErbB2-deregulated mammary acinar development. We obtained stable MCF10A cells overexpressing wild-type (Wt) Neu/ErbB2 or a constitutively active (CA) variant via retroviral delivery or mammary tumor cells from MMTV-Neu tumors. Western blotting, RT-PCR and confocal microscopy were used to analyze the effects of ErbB2 activation on eIF2α signaling and the effect of the GADD34-PP1C inhibitor salubrinal. Wt- and MMTV-Neu cells formed aberrant acini structures resembling DCIS, while CA-ErbB2 overexpression induced invasive lesions. In these structures we found that CA-ErbB2 but not the Wt variant significantly down-regulated the pro-apoptotic gene CHOP. This occurred without apparent modulation of basal phosphorylation of PERK and eIF2α or induction of its downstream target ATF4. However, inhibition of eIF2α dephosphorylation with salubrinal was sufficient to inhibit Wt- and CA-ErbB2- as well as MMTV-Neu-induced deregulation of acinar growth. This was linked to enhanced CHOP expression, inhibition of proliferation, induction of apoptosis and luminal clearing in Wt-ErbB2 and to inhibition of cyclin D1 levels and subsequent proliferation in CA-ErbB2 cells. Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and eIF2α phosphorylation. ErbB2 uncouples in basal conditions eIF2α phosphorylation from CHOP induction. However, this signal was restored by salubrinal treatment in Wt-ErbB2 expressing MCF10A cells as these DCIS-like structures underwent luminal clearing. In CA-ErbB2 structures apoptosis is not induced by salubrinal and instead a state of quiescence with reduced proliferation was achieved. Treatments that stabilize P-eIF2α levels may be effective in treating ErbB2 positive cancers without severely disrupting normal tissue function and structure.

15 citations


Patent
10 Nov 2009
TL;DR: In this article, a combination of a proteasome inhibitor and salubrinal was used to treat multiple myeloma (myeloma) in a clinical trial, and the results showed promising results.
Abstract: The disclosure provides methods for treating or preventing a cancerous condition, such as multiple myeloma, by administering a therapeutically effective combination of a proteasome inhibitor and salubrinal.