scispace - formally typeset
Search or ask a question

Showing papers in "Cancer Research in 2009"


Journal ArticleDOI
TL;DR: It is shown that ALDEFLUOR-positive cells are responsible for mediating metastasis and the hierarchical organization of immortalized cell lines, establish techniques that can facilitate the characterization of regulatory pathways of CSCs, and identify potential stem cell markers and therapeutic targets.
Abstract: Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function, as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally, we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines, establish techniques that can facilitate the characterization of regulatory pathways of CSCs, and identify potential stem cell markers and therapeutic targets.

1,134 citations


Journal ArticleDOI
TL;DR: It is shown that low doses of metformin, a standard drug for diabetes, inhibits cellular transformation and selectively kills cancer stem cells in four genetically different types of breast cancer.
Abstract: The cancer stem cell hypothesis suggests that, unlike most cancer cells within a tumor, cancer stem cells resist chemotherapeutic drugs and can regenerate the various cell types in the tumor, thereby causing relapse of the disease. Thus, drugs that selectively target cancer stem cells offer great promise for cancer treatment, particularly in combination with chemotherapy. Here, we show that low doses of metformin, a standard drug for diabetes, inhibits cellular transformation and selectively kills cancer stem cells in four genetically different types of breast cancer. The combination of metformin and a well-defined chemotherapeutic agent, doxorubicin, kills both cancer stem cells and non-stem cancer cells in culture. Furthermore, this combinatorial therapy reduces tumor mass and prevents relapse much more effectively than either drug alone in a xenograft mouse model. Mice seem to remain tumor-free for at least 2 months after combinatorial therapy with metformin and doxorubicin is ended. These results provide further evidence supporting the cancer stem cell hypothesis, and they provide a rationale and experimental basis for using the combination of metformin and chemotherapeutic drugs to improve treatment of patients with breast (and possibly other) cancers.

1,036 citations


Journal ArticleDOI
TL;DR: An integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development is described and a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice.
Abstract: Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t1/2, ~17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as ~2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation.

1,030 citations


Journal ArticleDOI
TL;DR: Novel forms of AR alteration that are prevalent in HRPC are reported, suggesting a novel mechanism for the development of HRPC that warrants further investigation and may be explored as potential biomarkers and therapeutic targets for advanced PCa.
Abstract: Suppression of androgen production and function provides palliation but not cure in men with prostate cancer (PCa). Therapeutic failure and progression to hormone-refractory PCa (HRPC) are often accompanied by molecular alterations involving the androgen receptor (AR). In this study, we report novel forms of AR alteration that are prevalent in HRPC. Through in silico sequence analysis and subsequent experimental validation studies, we uncovered seven AR variant transcripts lacking the reading frames for the ligand-binding domain due to splicing of "intronic" cryptic exons to the upstream exons encoding the AR DNA-binding domain. We focused on the two most abundantly expressed variants, AR-V1 and AR-V7, for more detailed analysis. AR-V1 and AR-V7 mRNA showed an average 20-fold higher expression in HRPC (n = 25) when compared with hormone-naive PCa (n = 82; P < 0.0001). Among the hormone-naive PCa, higher expression of AR-V7 predicted biochemical recurrence following surgical treatment (P = 0.012). Polyclonal antibodies specific to AR-V7 detected the AR-V7 protein frequently in HRPC specimens but rarely in hormone-naive PCa specimens. AR-V7 was localized in the nuclei of cultured PCa cells under androgen-depleted conditions, and constitutively active in driving the expression of canonical androgen-responsive genes, as revealed by both AR reporter assays and expression microarray analysis. These results suggest a novel mechanism for the development of HRPC that warrants further investigation. In addition, as expression markers for lethal PCa, these novel AR variants may be explored as potential biomarkers and therapeutic targets for advanced PCa.

1,028 citations


Journal ArticleDOI
TL;DR: The findings of this work support the original hypothesis, derived previously from mathematical modeling of crypt dynamics, that progressive colonic SC overpopulation occurs during colon tumorigenesis and drives CRC development.
Abstract: Although the concept that cancers originate from stem cells (SC) is becoming scientifically accepted, mechanisms by which SC contribute to tumor initiation and progression are largely unknown. For colorectal cancer (CRC), investigation of this problem has been hindered by a paucity of specific markers for identification and isolation of SC from normal and malignant colon. Accordingly, aldehyde dehydrogenase 1 (ALDH1) was investigated as a possible marker for identifying colonic SC and for tracking them during cancer progression. Immunostaining showed that ALDH1 + cells are sparse and limited to the normal crypt bottom, where SCs reside. During progression from normal epithelium to mutant ( APC ) epithelium to adenoma, ALDH1 + cells increased in number and became distributed farther up the crypt. CD133 + and CD44 + cells, which are more numerous and broadly distributed in normal crypts, showed similar changes during tumorigenesis. Flow cytometric isolation of cancer cells based on enzymatic activity of ALDH (Aldefluor assay) and implantation of these cells in nonobese diabetic–severe combined immunodeficient mice ( a ) generated xenograft tumors (Aldefluor − cells did not), ( b ) generated them after implanting as few as 25 cells, and ( c ) generated them dose dependently. Further isolation of cancer cells using a second marker (CD44 + or CD133 + serially) only modestly increased enrichment based on tumor-initiating ability. Thus, ALDH1 seems to be a specific marker for identifying, isolating, and tracking human colonic SC during CRC development. These findings also support our original hypothesis, derived previously from mathematical modeling of crypt dynamics, that progressive colonic SC overpopulation occurs during colon tumorigenesis and drives CRC development. [Cancer Res 2009;69(8):3382–9]

1,000 citations


Journal ArticleDOI
TL;DR: Three robust HCC subclasses are observed, each correlated with clinical parameters such as tumor size, extent of cellular differentiation, and serum alpha-fetoprotein levels, and it is indicated that S1 reflected aberrant activation of the WNT signaling pathway, S2 was characterized by proliferation as well as MYC and AKT activation, and S3 was associated with hepatocyte differentiation.
Abstract: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, and prior attempts to develop genomic-based classification for HCC have yielded highly divergent results, indicating difficulty in identifying unified molecular anatomy We performed a meta-analysis of gene expression profiles in data sets from eight independent patient cohorts across the world In addition, aiming to establish the real world applicability of a classification system, we profiled 118 formalin-fixed, paraffin-embedded tissues from an additional patient cohort A total of 603 patients were analyzed, representing the major etiologies of HCC (hepatitis B and C) collected from Western and Eastern countries We observed three robust HCC subclasses (termed S1, S2, and S3), each correlated with clinical parameters such as tumor size, extent of cellular differentiation, and serum α-fetoprotein levels An analysis of the components of the signatures indicated that S1 reflected aberrant activation of the WNT signaling pathway, S2 was characterized by proliferation as well as MYC and AKT activation, and S3 was associated with hepatocyte differentiation Functional studies indicated that the WNT pathway activation signature characteristic of S1 tumors was not simply the result of β-catenin mutation but rather was the result of transforming growth factor-β activation, thus representing a new mechanism of WNT pathway activation in HCC These experiments establish the first consensus classification framework for HCC based on gene expression profiles and highlight the power of integrating multiple data sets to define a robust molecular taxonomy of the disease [Cancer Res 2009;69(18):7385–92]

922 citations


Journal ArticleDOI
TL;DR: The results suggest that lack of critical chemokines in a subset of melanoma metastases may limit the migration of activated T cells, which in turn could limit the effectiveness of antitumor immunity.
Abstract: Despite the frequent detection of circulating tumor antigen-specific T cells, either spontaneously or following active immunization or adoptive transfer, immune-mediated cancer regression occurs only in the minority of patients. One theoretical rate-limiting step is whether effector T cells successfully migrate into metastatic tumor sites. Affymetrix gene expression profiling done on a series of metastatic melanoma biopsies revealed a major segregation of samples based on the presence or absence of T-cell-associated transcripts. The presence of lymphocytes correlated with the expression of defined chemokine genes. A subset of six chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) was confirmed by protein array and/or quantitative reverse transcription-PCR to be preferentially expressed in tumors that contained T cells. Corresponding chemokine receptors were found to be up-regulated on human CD8(+) effector T cells, and transwell migration assays confirmed the ability of each of these chemokines to promote migration of CD8(+) effector cells in vitro. Screening by chemokine protein array identified a subset of melanoma cell lines that produced a similar broad array of chemokines. These melanoma cells more effectively recruited human CD8(+) effector T cells when implanted as xenografts in nonobese diabetic/severe combined immunodeficient mice in vivo. Chemokine blockade with specific antibodies inhibited migration of CD8(+) T cells. Our results suggest that lack of critical chemokines in a subset of melanoma metastases may limit the migration of activated T cells, which in turn could limit the effectiveness of antitumor immunity.

894 citations


Journal ArticleDOI
TL;DR: Capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism.
Abstract: Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism.

882 citations


Journal Article
TL;DR: The c-Myc oncogenic transcription factor, which is known to regulate microRNAs and stimulate cell proliferation, transcriptionally represses miR-23a and miB-23b, resulting in greater expression of their target protein, mitochondrial glutaminase, in human P-493 B lymphoma cells and PC3 prostate cancer cells, which leads to upregulation of glutamine catabolism.
Abstract: Notwithstanding the renewed interest in the Warburg effect, which describes the propensity for cancer cells to avidly metabolize glucose to lactate, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes glutamine to generate ATP and lactate. Glutamine is a major source for energy, carbon and nitrogen for anabolic processes in cancer cells, but the regulation of glutamine metabolism is not well understood. Here, we report that the c-Myc oncogenic transcription factor regulates glutamine metabolism by a previously unsuspected mechanism which involves c-Myc suppression of miR-23 microRNAs that target and inhibit mitochondrial glutaminase, or GLS, the first enzyme that catabolizes glutamine. c-Myc also transactivates expression of glutamine transporter genes. We studied the human P-493 B cells that bear a tetracycline-repressible c-Myc construct, such that tetracycline withdrawal induces c-Myc and mitochondrial biogenesis followed by cell proliferation. We found through analyzing the mitochondrial proteome that GLS was increased dramatically in response to c-Myc induction. siRNA targeting GLS1 diminishes cell proliferation and increased apoptosis, indicating that GLS1 is necessary for Myc induced cell proliferation. GLS converts glutamine to glutamate that is further catabolized through the TCA cycle for the production of ATP or serves as substrate for glutathione synthesis. In this regard, depletion of glutamine significantly diminished proliferation of P-493 cell and the human prostate PC3 cancer cell line. Although GLS protein levels are induced >10-fold by c-Myc in P-493 cells, GLS1 mRNA did not vary significantly, suggesting that regulation of GLS protein levels by c-Myc is post-transcriptional. We document that c-Myc transcriptionally represses miR-23, which can inhibit the expression of GLS protein through targeting the 3\#8217;UTR. In addition to the responses of wild-type and miR-23 seed sequence mutant luciferase-GLS1-3\#8217;UTR reporter constructs, antisense miR-23 LNA oligonucleotides were able to elevate GLS protein levels in low c-Myc expressing P493 and PC3 cells, indicating that GLS1 mRNA is a target of miR-23 that inhibits glutaminase translation. Since miR-23 expression is decreased in human prostate cancer, we immunoblotted and found a correlation between c-Myc and GLS protein levels in human prostate cancer samples as compared with lowered expression in the corresponding normal prostate tissues. The unique means by which Myc regulates GLS uncovers a previously unsuspected link between Myc regulation of miRNAs, glutamine metabolism, and energy and reactive oxygen species (ROS) homeostasis and provides a regulatory mechanism involving c-Myc and miRNAs for elevated expression of glutaminase and glutamine metabolism in human cancers. Citation Information: In: Proc Am Assoc Cancer Res; 2009 Apr 18-22; Denver, CO. Philadelphia (PA): AACR; 2009. Abstract nr LB-186.

878 citations


Journal ArticleDOI
TL;DR: The data suggest that aberrant expression of AR splice variants may be a novel mechanism underlying ablation independence during PCA progression, and AR3 may serve as a prognostic marker to predict patient outcome in response to hormonal therapy.
Abstract: The androgen receptor (AR) plays a key role in progression to incurable androgen ablation–resistant prostate cancer (PCA). We have identified three novel AR splice variants lacking the ligand-binding domain (designated as AR3, AR4, and AR5) in hormone-insensitive PCA cells. AR3, one of the major splice variants expressed in human prostate tissues, is constitutively active, and its transcriptional activity is not regulated by androgens or antiandrogens. Immunohistochemistry analysis on tissue microarrays containing 429 human prostate tissue samples shows that AR3 is significantly up-regulated during PCA progression and AR3 expression level is correlated with the risk of tumor recurrence after radical prostatectomy. Overexpression of AR3 confers ablation-independent growth of PCA cells, whereas specific knockdown of AR3 expression (without altering AR level) in hormone-resistant PCA cells attenuates their growth under androgen-depleted conditions in both cell culture and xenograft models, suggesting an indispensable role of AR3 in ablation-independent growth of PCA cells. Furthermore, AR3 may play a distinct, yet essential, role in ablation-independent growth through the regulation of a unique set of genes, including AKT1 , which are not regulated by the prototype AR. Our data suggest that aberrant expression of AR splice variants may be a novel mechanism underlying ablation independence during PCA progression, and AR3 may serve as a prognostic marker to predict patient outcome in response to hormonal therapy. Given that these novel AR splice variants are not inhibited by currently available antiandrogen drugs, development of new drugs targeting these AR isoforms may potentially be effective for treatment of ablation-resistant PCA. [Cancer Res 2009;69(6):2305–13]

851 citations


Journal ArticleDOI
TL;DR: Metaplastic breast cancers (MBCs) are aggressive, chemoresistant tumors characterized by lineage plasticity as discussed by the authors, and they have unique DNA copy number aberrations compared with common breast cancers.
Abstract: Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a "tumorigenic" signature defined using CD44(+)/CD24(-) breast tumor-initiating stem cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets.

Journal ArticleDOI
TL;DR: Support is provided for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells.
Abstract: Glioblastoma multiforme (GBM) is a malignant astrocytoma of the central nervous system associated with a median survival time of 15 months, even with aggressive therapy. This rapid progression is due in part to diffuse infiltration of single tumor cells into the brain parenchyma, which is thought to involve aberrant interactions between tumor cells and the extracellular matrix (ECM). Here, we test the hypothesis that mechanical cues from the ECM contribute to key tumor cell properties relevant to invasion. We cultured a series of glioma cell lines (U373-MG, U87-MG, U251-MG, SNB19, C6) on fibronectin-coated polymeric ECM substrates of defined mechanical rigidity and investigated the role of ECM rigidity in regulating tumor cell structure, migration, and proliferation. On highly rigid ECMs, tumor cells spread extensively, form prominent stress fibers and mature focal adhesions, and migrate rapidly. As ECM rigidity is lowered to values comparable with normal brain tissue, tumor cells appear rounded and fail to productively migrate. Remarkably, cell proliferation is also strongly regulated by ECM rigidity, with cells dividing much more rapidly on rigid than on compliant ECMs. Pharmacologic inhibition of nonmuscle myosin II–based contractility blunts this rigidity-sensitivity and rescues cell motility on highly compliant substrates. Collectively, our results provide support for a novel model in which ECM rigidity provides a transformative, microenvironmental cue that acts through actomyosin contractility to regulate the invasive properties of GBM tumor cells. [Cancer Res 2009;69(10):4167–74]

Journal ArticleDOI
TL;DR: In this article, the authors characterized patterns of sensitivity and resistance to three conventional chemotherapeutic agents with divergent mechanisms of action [gemcitabine, 5-fluorouracil (5-FU), and cisplatin] in pancreatic cancer cells.
Abstract: A better understanding of drug resistance mechanisms is required to improve outcomes in patients with pancreatic cancer. Here, we characterized patterns of sensitivity and resistance to three conventional chemotherapeutic agents with divergent mechanisms of action [gemcitabine, 5-fluorouracil (5-FU), and cisplatin] in pancreatic cancer cells. Four (L3.6pl, BxPC-3, CFPAC-1, and SU86.86) were sensitive and five (PANC-1, Hs766T, AsPC-1, MIAPaCa-2, and MPanc96) were resistant to all three agents based on GI(50) (50% growth inhibition). Gene expression profiling and unsupervised hierarchical clustering revealed that the sensitive and resistant cells formed two distinct groups and differed in expression of specific genes, including several features of "epithelial to mesenchymal transition" (EMT). Interestingly, an inverse correlation between E-cadherin and its transcriptional suppressor, Zeb-1, was observed in the gene expression data and was confirmed by real-time PCR. Independent validation experiment using five new pancreatic cancer cell lines confirmed that an inverse correlation between E-cadherin and Zeb-1 correlated closely with resistance to gemcitabine, 5-FU, and cisplatin. Silencing Zeb-1 in the mesenchymal lines not only increased the expression of E-cadherin but also other epithelial markers, such as EVA1 and MAL2, and restored drug sensitivity. Importantly, immunohistochemical analysis of E-cadherin and Zeb-1 in primary tumors confirmed that expression of the two proteins was mutually exclusive (P = 0.012). Therefore, our results suggest that Zeb-1 and other regulators of EMT may maintain drug resistance in human pancreatic cancer cells, and therapeutic strategies to inhibit Zeb-1 and reverse EMT should be evaluated.

Journal ArticleDOI
TL;DR: The mutational analysis of PIK3CA and KRAS and evaluation of the PTEN protein status in a cohort of 110 patients with mCRC treated with anti-EGFR moAbs indicate that Pik3CA mutations can independently hamper the therapeutic response to panitumumab or cetuximab in mC RC.
Abstract: The monoclonal antibodies (moAb) panitumumab and cetuximab target the epidermal growth factor receptor (EGFR) and have proven valuable for the treatment of metastatic colorectal cancer (mCRC).EGFR-mediated signaling involves two main intracellular cascades: on one side KRAS activates BRAF, which in turn triggers the mitogen-activated protein kinases.On the other, membrane localization of the lipid kinase PIK3CA counteracts PTEN and promotes AKT1 phosphorylation, thereby activating a parallel intracellular axis. Constitutive activation of KRAS bypasses the corresponding signaling cascade and, accordingly, patients with mCRC bearing KRAS mutations are clinically resistant to therapy with panitumumab or cetuximab.We hypothesized that mutations activating PIK3CA could also preclude responsiveness to EGFR-targeted moAbs through a similar mechanism. Here, we present the mutational analysis of PIK3CA and KRAS and evaluation of the PTEN protein status in a cohort of 110 patients with mCRC treated with anti-EGFR moAbs.We observed 15 (13.6%) PIK3CA and 32 (29.0%) KRAS mutations. PIK3CA mutations were significantly associated with clinical resistance to panitumumab or cetuximab; none of the mutated patients achieved objective response (P = 0.038). When only KRAS wild-type tumors were analyzed, the statistical correlation was stronger (P = 0.016). Patients with PIK3CA mutations displayed a worse clinical outcome also in terms of progression-free survival (P = 0.035). Our data indicate that PIK3CA mutations can independently hamper the therapeutic response to panitumumab or cetuximab in mCRC.When the molecular status of the PIK3CA/PTEN and KRAS pathways are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to EGFR moAbs can be identified. [Cancer Res 2009;69(5):1851–7]

Journal ArticleDOI
TL;DR: The results show that TiO(2) nanoparticles induced 8-hydroxy-2'-deoxyguanosine, gamma-H2AX foci, micronuclei, and DNA deletions, and inflammation was present as characterized by a moderate inflammatory response, and these findings raise concern about potential health hazards associated with TiO('s nanoparticles exposure.
Abstract: Titanium dioxide (TiO2) nanoparticles are manufactured worldwide in large quantities for use in a wide range of applications including pigment and cosmetic manufacturing. Although TiO2 is chemically inert, TiO2 nanoparticles can cause negative health effects, such as respiratory tract cancer in rats. However, the mechanisms involved in TiO2-induced genotoxicity and carcinogenicity have not been clearly defined and are poorly studied in vivo. The present study investigates TiO2 nanoparticles–induced genotoxicity, oxidative DNA damage, and inflammation in a mice model. We treated wild-type mice with TiO2 nanoparticles in drinking water and determined the extent of DNA damage using the comet assay, the micronuclei assay, and the γ-H2AX immunostaining assay and by measuring 8-hydroxy-2′-deoxyguanosine levels and, as a genetic instability endpoint, DNA deletions. We also determined mRNA levels of inflammatory cytokines in the peripheral blood. Our results show that TiO2 nanoparticles induced 8-hydroxy-2′-deoxyguanosine, γ-H2AX foci, micronuclei, and DNA deletions. The formation of γ-H2AX foci, indicative of DNA double-strand breaks, was the most sensitive parameter. Inflammation was also present as characterized by a moderate inflammatory response. Together, these results describe the first comprehensive study of TiO2 nanoparticles–induced genotoxicity in vivo in mice possibly caused by a secondary genotoxic mechanism associated with inflammation and/or oxidative stress. Given the growing use of TiO2 nanoparticles, these findings raise concern about potential health hazards associated with TiO2 nanoparticles exposure. [Cancer Res

Journal ArticleDOI
TL;DR: The results show that human MDSC are a subpopulation of activated polymorphonuclear (PMN) cells expressing high levels of CD66b, CD11b, and VEGFR1 and low levels ofCD62L and CD16, which may provide new insights on the mechanisms of tumor-induced anergy/tolerance and may help explain why some immunotherapies fail to induce an antitumor response.
Abstract: Myeloid-derived suppressor cells (MDSC) producing arginase I are increased in the peripheral blood of patients with renal cell carcinoma (RCC) MDSC inhibit T-cell function by reducing the availability of L-arginine and are therefore considered an important tumor escape mechanism We aimed to determine the origin of arginase I-producing MDSC in RCC patients and to identify the mechanisms used to deplete extracellular L-arginine The results show that human MDSC are a subpopulation of activated polymorphonuclear (PMN) cells expressing high levels of CD66b, CD11b, and VEGFR1 and low levels of CD62L and CD16 In contrast to murine MDSC, human MDSC do not deplete L-arginine by increasing its uptake but instead release arginase I into the circulation Activation of normal PMN induces phenotypic and functional changes similar to MDSC and also promotes the release of arginase I from intracellular granules Interestingly, although activation of normal PMN usually ends with apoptosis, MDSC showed no increase in apoptosis compared with autologous PMN or PMN obtained from normal controls High levels of VEGF have been shown to increase suppressor immature myeloid dendritic cells in cancer patients Treatment of RCC patients with anti-VEGF antibody bevacizumab, however, did not reduce the accumulation of MDSC in peripheral blood In contrast, the addition of interleukin-2 to the treatment increased the number of MDSC in peripheral blood and the plasma levels of arginase I These results may provide new insights on the mechanisms of tumor-induced anergy/tolerance and may help explain why some immunotherapies fail to induce an antitumor response

Journal ArticleDOI
TL;DR: Hypoxia-induced CAIX and CAXII are major tumor prosurvival pH(i)-regulating enzymes, and their combined targeting shows that they hold potential as anticancer targets.
Abstract: Acidosis of the tumor microenvironment is typical of a malignant phenotype, particularly in hypoxic tumors. All cells express multiple isoforms of carbonic anhydrase (CA), enzymes catalyzing the reversible hydration of carbon dioxide into bicarbonate and protons. Tumor cells express membrane-bound CAIX and CAXII that are controlled via the hypoxia-inducible factor (HIF). Despite the recognition that tumor expression of HIF-1alpha and CAIX correlates with poor patient survival, the role of CAIX and CAXII in tumor growth is not fully resolved. To understand the advantage that tumor cells derive from expression of both CAIX and CAXII, we set up experiments to either force or invalidate the expression of these enzymes. In hypoxic LS174Tr tumor cells expressing either one or both CA isoforms, we show that (a) in response to a "CO(2) load," both CAs contribute to extracellular acidification and (b) both contribute to maintain a more alkaline resting intracellular pH (pH(i)), an action that preserves ATP levels and cell survival in a range of acidic outside pH (6.0-6.8) and low bicarbonate medium. In vivo experiments show that ca9 silencing alone leads to a 40% reduction in xenograft tumor volume with up-regulation of ca12 mRNA levels, whereas invalidation of both CAIX and CAXII gives an impressive 85% reduction. Thus, hypoxia-induced CAIX and CAXII are major tumor prosurvival pH(i)-regulating enzymes, and their combined targeting shows that they hold potential as anticancer targets.

Journal ArticleDOI
TL;DR: Results show that Treg are selectively recruited within lymphoid infiltrates and activated by mature DC likely through TAA presentation, resulting in the prevention of effector T-cell activation, immune escape, and ultimately tumor progression.
Abstract: Immunohistochemical analysis of FOXP3 in primary breast tumors showed that a high number of tumor-infiltrating regulatory T cells (Ti-Treg) within lymphoid infiltrates surrounding the tumor was predictive of relapse and death, in contrast to those present within the tumor bed. Ex vivo analysis showed that these tumor-infiltrating FOXP3(+) T cells are typical Treg based on their CD4(+)CD25(high)CD127(low)FOXP3(+) phenotype, their anergic state on in vitro stimulation, and their suppressive functions. These Ti-Treg could be selectively recruited through CCR4 as illustrated by (a) selective blood Treg CCR4 expression and migration to CCR4 ligands, (b) CCR4 down-regulation on Ti-Treg, and (c) correlation between Ti-Treg in lymphoid infiltrates and intratumoral CCL22 expression. Importantly, in contrast to other T cells, Ti-Treg are selectively activated locally and proliferate in situ, showing T-cell receptor engagement and suggesting specific recognition of tumor-associated antigens (TAA). Immunohistochemical stainings for ICOS, Ki67, and DC-LAMP show that Ti-Treg were close to mature DC-LAMP(+) dendritic cells (DC) in lymphoid infiltrates but not in tumor bed and were activated and proliferating. Furthermore, proximity between Ti-Treg, CD3(+), and CD8(+) T cells was documented within lymphoid infiltrates. Altogether, these results show that Treg are selectively recruited within lymphoid infiltrates and activated by mature DC likely through TAA presentation, resulting in the prevention of effector T-cell activation, immune escape, and ultimately tumor progression. This study sheds new light on Treg physiology and validates CCR4/CCL22 and ICOS as therapeutic targets in breast tumors, which represent a major health problem.

Journal ArticleDOI
TL;DR: Experimental evidence is provided, for the first time, that DIM and isoflavone could function as miRNA regulators leading to the reversal of EMT phenotype, which is likely to be important for designing novel therapies for pancreatic cancer.
Abstract: Pancreatic cancer is the fourth most common cause of cancer death in the United States, and the aggressiveness of pancreatic cancer is in part due to its intrinsic and extrinsic drug resistance characteristics, which are also associated with the acquisition of epithelial-to-mesenchymal transition (EMT) Emerging evidence also suggests that the processes of EMT are regulated by the expression status of many microRNAs (miRNA), which are believed to function as key regulators of various biological and pathologic processes during tumor development and progression In the present study, we compared the expression of miRNAs between gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells and investigated whether the treatment of cells with “natural agents” [3,3′-diindolylmethane (DIM) or isoflavone] could affect the expression of miRNAs We found that the expression of miR-200b, miR-200c, let-7b, let-7c, let-7d, and let-7e was significantly down-regulated in gemcitabine-resistant cells, which showed EMT characteristics such as elongated fibroblastoid morphology, lower expression of epithelial marker E-cadherin, and higher expression of mesenchymal markers such as vimentin and ZEB1 Moreover, we found that reexpression of miR-200 by transfection studies or treatment of gemcitabine-resistant cells with either DIM or isoflavone resulted in the down-regulation of ZEB1, slug, and vimentin, which was consistent with morphologic reversal of EMT phenotype leading to epithelial morphology These results provide experimental evidence, for the first time, that DIM and isoflavone could function as miRNA regulators leading to the reversal of EMT phenotype, which is likely to be important for designing novel therapies for pancreatic cancer [Cancer Res 2009;69(16):6704–12]

Proceedings ArticleDOI
TL;DR: The results of this trial help define the role of trastuzumab in the breast cancer HER2-positive adjuvant setting, as well as the risks/benefits of adjUvant trastzumab within the context of overall safety including cardiac toxicity.
Abstract: Background: Evaluation of the long-term benefit of biologically-based regimens of trastuzumab in the early breast cancer population, and optimization of trastuzumab integration to maximize efficacy and minimize cardiac toxicity. Material and Methods: We randomized HER2-positive (FISH+) breast cancer patients with axillary lymph node positive or high risk negative, to either standard AC (60/600 mg/m 2 q3wk x4) followed by T (100 mg/m 2 q3wk x 4) or two trastuzumab-containing regimens; AC followed by T with trastuzumab x 1 year or TCarbo (75 mg/m 2 /AUC6 q3wk x 6) with trastuzumab x 1 year. Patients were prospectively stratified by number of positive nodes (0, 1-3 vs 4+) and hormone receptor status. Patients with ER and/or PR positive (HR+) tumors received hormone-directed therapy for 5 yrs after chemotherapy. The primary endpoint was disease-free survival (DFS) with 80% power (0.05 significance level) to detect an absolute difference of 7%. Secondary endpoints include overall survival (OS) and safety, including cardiac toxicity (symptomatic events and asymptomatic LVEF decline). The first two protocol-specified analyses for this study were performed at 300 and 450 disease-related events. We now report the results of the third protocol-specified analysis conducted after 650 events, expected by end of June 2009. Results: A total of 3222 patients (1072 in AC-T, 1076 in AC-TH and 1074 in TCH) were recruited between April 2001 and March 2004. Baseline characteristics of the study population will be included. Cox analysis of DFS and OS (unadjusted and adjusted for nodal status) and cardiac toxicity data will be presented for the three treatment arms. Discussion: The results of this trial help define the role of trastuzumab in the breast cancer HER2-positive adjuvant setting, as well as the risks/benefits of adjuvant trastuzumab within the context of overall safety including cardiac toxicity. This latter objective is of particular importance given that many of these women may be cured of their disease in the adjuvant setting. Citation Information: Cancer Res 2009;69(24 Suppl):Abstract nr 62.

Journal ArticleDOI
TL;DR: The principle of a new class of bispecific antibodies called BiTE (for "bispecific T-cell engager") antibodies is reviewed, suggesting that this therapeutic paradigm is finally showing promise for treatment of both bulky and minimal residual disease.
Abstract: There is increasing evidence that T cells are able to control tumor growth and survival in cancer patients, both in early and late stages of the disease. However, tumor-specific T-cell responses are difficult to mount and sustain in cancer patients, and are limited by numerous immune escape mechanisms of tumor cells selected during immunoediting. An alternative approach to engage T cells for cancer therapy are antibodies, which are bispecific for a surface target antigen on cancer cells, and for CD3 on T cells. These are capable of connecting any kind of cytotoxic T cell to a cancer cell, independently of T-cell receptor specificity, costimulation, or peptide antigen presentation. Here, we review the principle of a new class of bispecific antibodies called BiTE (for "bispecific T-cell engager") antibodies. Recent results from clinical studies with a CD19/CD3-bispecific BiTE antibody suggest that this therapeutic paradigm is finally showing promise for treatment of both bulky and minimal residual disease.

Journal ArticleDOI
TL;DR: The results indicate that miR-101 may exert its proapoptotic function via targeting Mcl-1, and suggest an important role of mi R-101 in the molecular etiology of cancer and implicate the potential application of miR -101 in cancer therapy.
Abstract: Although aberrant microRNA (miRNA) expressions have been observed in different types of cancer, their pathophysiologic role and their relevance to tumorigenesis are still largely unknown. In this study, we first evaluated the expression of 308 miRNAs in human hepatocellular carcinoma (HCC) and normal hepatic tissues and identified 29 differentially expressed miRNAs in HCC tissues. miR-101, a significantly down-regulated miRNA, was further studied in greater detail because the signal pathway(s) regulated by miR-101 and the role of miR-101 in tumorigenesis have not yet been elucidated. Interestingly, decreased expression of miR-101 was found in all six hepatoma cell lines examined and in as high as 94.1% of HCC tissues, compared with their nontumor counterparts. Furthermore, ectopic expression of miR-101 dramatically suppressed the ability of hepatoma cells to form colonies in vitro and to develop tumors in nude mice. We also found that miR-101 could sensitize hepatoma cell lines to both serum starvation- and chemotherapeutic drug-induced apoptosis. Further investigation revealed that miR-101 significantly repressed the expression of luciferase carrying the 3'-untranslated region of Mcl-1 and reduced the endogenous protein level of Mcl-1, whereas the miR-101 inhibitor obviously up-regulated Mcl-1 expression and inhibited cell apoptosis. Moreover, silencing of Mcl-1 phenocopied the effect of miR-101 and forced expression of Mcl-1 could reverse the proapoptotic effect of miR-101. These results indicate that miR-101 may exert its proapoptotic function via targeting Mcl-1. Taken together, our data suggest an important role of miR-101 in the molecular etiology of cancer and implicate the potential application of miR-101 in cancer therapy.

Journal ArticleDOI
TL;DR: Molecular evidence is provided showing that the activation of Notch signaling is mechanistically linked with chemoresistance phenotype (EMT phenotype) of PC cells, suggesting that the inactivation of notch signaling by novel strategies could be a potential targeted therapeutic approach for overcoming chemores resistance toward the prevention of tumor progression and/or treatment of metastatic PC.
Abstract: Despite rapid advances in many fronts, pancreatic cancer (PC) remains one of the most difficult human malignancies to treat due, in part, to de novo and acquired chemoresistance and radioresistance. Gemcitabine alone or in combination with other conventional therapeutics is the standard of care for the treatment of advanced PC without any significant improvement in the overall survival of patients diagnosed with this deadly disease. Previous studies have shown that PC cells that are gemcitabine-resistant (GR) acquired epithelial-mesenchymal transition (EMT) phenotype, which is reminiscent of "cancer stem-like cells"; however, the molecular mechanism that led to EMT phenotype has not been fully investigated. The present study shows that Notch-2 and its ligand, Jagged-1, are highly up-regulated in GR cells, which is consistent with the role of the Notch signaling pathway in the acquisition of EMT and cancer stem-like cell phenotype. We also found that the down-regulation of Notch signaling was associated with decreased invasive behavior of GR cells. Moreover, down-regulation of Notch signaling by siRNA approach led to partial reversal of the EMT phenotype, resulting in the mesenchymal-epithelial transition, which was associated with decreased expression of vimentin, ZEB1, Slug, Snail, and nuclear factor-kappaB. These results provide molecular evidence showing that the activation of Notch signaling is mechanistically linked with chemoresistance phenotype (EMT phenotype) of PC cells, suggesting that the inactivation of Notch signaling by novel strategies could be a potential targeted therapeutic approach for overcoming chemoresistance toward the prevention of tumor progression and/or treatment of metastatic PC.

Journal ArticleDOI
TL;DR: Findings show that lymphopenia is an independent prognostic factor for overall and progression-free survival in several cancers.
Abstract: Lymphopenia is frequent in advanced cancers and predicts the toxicity of chemotherapy. Its effect on relapse and survival is uncertain. Its prognostic value for survival was analyzed in three databases of previously reported prospective multicenter studies: (a) FEC chemotherapy in metastatic breast carcinoma; (b) CYVADIC in advanced soft tissue sarcoma (European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group 62791); and (c) prospective, consecutive phase III studies of aggressive diffuse large-cell non-Hodgkin's lymphomas conducted at Centre Leon Berard between 1987 and 1993. Univariate and multivariate analyses of prognostic factors for survival were performed. The incidence of lymphopenia of 1, non-Hodgkin's lymphoma patients with international prognostic index (IPI) of > 0, and advanced soft tissue sarcoma and metastatic breast cancer patients with bone metastases. Inunivariate analysis, lymphopenia of <1,000/microL significantly correlated to overall survival in patients with metastatic breast cancer (median, 10 versus 14 mo; P < 0.0001), advanced soft tissue sarcoma (median, 5 versus 10 months; P < 0.01), and non-Hodgkin lymphoma (median, 11 versus 94 months; P < 0.0001). In multivariate analysis (Cox model), lymphopenia was an independent prognostic factor for overall survival in metastatic breast cancer [RR (relative risk), 1.8; 95% CI (confidence interval), 1.3-2.4] along with liver metastases and PS; in advanced soft tissue sarcoma (RR, 1.46; 95% CI, 1.0-2.1) along with liver metastases, lung metastases, and PS; and in non-Hodgkin's lymphoma (RR, 1.48; 95% CI, 1.03-2.1) along with IPI. Our findings show that lymphopenia is an independent prognostic factor for overall and progression-free survival in several cancers.

Journal ArticleDOI
TL;DR: It is concluded that spontaneous malignant transformation may represent a biohazard in long-term ex vivo expansion of hMSC and this spontaneous transformation process may represents a unique model for studying molecular pathways initiating malignant Transformation of h MSC.
Abstract: Human mesenchymal stem cells (hMSC) aid in tissue maintenance and repair by differentiating into specialized cell types. Due to this ability, hMSC are currently being evaluated for cell-based therapies of tissue injury and degenerative diseases. However, extensive expansion ex vivo is a prerequisite to obtain the cell numbers required for human cell-based therapy protocols. Recent studies indicate that hMSC may contribute to cancer development and progression either by acting as cancer-initiating cells or through interactions with stromal elements. If spontaneous transformation ex vivo occurs, this may jeopardize the use of hMSC as therapeutic tools. Whereas murine MSC readily undergo spontaneous transformation, there are conflicting reports about spontaneous transformation of hMSC. We have addressed this controversy in a two-center study by growing bone marrow-derived hMSC in long-term cultures (5-106 weeks). We report for the first time spontaneous malignant transformation to occur in 45.8% (11 of 24) of these cultures. In comparison with hMSC, the transformed mesenchymal cells (TMC) showed a significantly increased proliferation rate and altered morphology and phenotype. In contrast to hMSC, TMC grew well in soft agar assays and were unable to undergo complete differentiation. Importantly, TMC were highly tumorigenic, causing multiple fast-growing lung deposits when injected into immunodeficient mice. We conclude that spontaneous malignant transformation may represent a biohazard in long-term ex vivo expansion of hMSC. On the other hand, this spontaneous transformation process may represent a unique model for studying molecular pathways initiating malignant transformation of hMSC.

Journal ArticleDOI
TL;DR: It is suggested that miR-34a could serve as a potential therapeutic agent for brain tumors after being shown to suppresses brain tumor growth by targeting c-Met and Notch.
Abstract: MicroRNA-34a (miR-34a) is a transcriptional target of p53 that is down-regulated in some cancer cell lines. We studied the expression, targets, and functional effects of miR-34a in brain tumor cells and human gliomas. Transfection of miR-34a down-regulated c-Met in human glioma and medulloblastoma cells and Notch-1, Notch-2, and CDK6 protein expressions in glioma cells. miR-34a expression inhibited c-Met reporter activities in glioma and medulloblastoma cells and Notch-1 and Notch-2 3'-untranslated region reporter activities in glioma cells and stem cells. Analysis of human specimens showed that miR-34a expression is down-regulated in glioblastoma tissues as compared with normal brain and in mutant p53 gliomas as compared with wild-type p53 gliomas. miR-34a levels in human gliomas inversely correlated to c-Met levels measured in the same tumors. Transient transfection of miR-34a into glioma and medulloblastoma cell lines strongly inhibited cell proliferation, cell cycle progression, cell survival, and cell invasion, but transfection of miR-34a into human astrocytes did not affect cell survival and cell cycle status. Forced expression of c-Met or Notch-1/Notch-2 transcripts lacking the 3'-untranslated region sequences partially reversed the effects of miR-34a on cell cycle arrest and cell death in glioma cells and stem cells, respectively. Also, transient expression of miR-34a in glioblastoma cells strongly inhibited in vivo glioma xenograft growth. Together, these findings represent the first comprehensive analysis of the role of miR-34a in gliomas. They show that miR-34a suppresses brain tumor growth by targeting c-Met and Notch. The results also suggest that miR-34a could serve as a potential therapeutic agent for brain tumors.

Journal ArticleDOI
TL;DR: It is shown that GPR109A mediates the tumor-suppressive effects of the bacterial fermentation product butyrate in colon and suppresses nuclear factor-kappaB activation in normal and cancer colon cell lines as well as in normal mouse colon.
Abstract: Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor maximally, there have been no reports on the expression/function of GPR109A in this tissue. Here we show that GPR109A is expressed in the lumen-facing apical membrane of colonic and intestinal epithelial cells and that the receptor recognizes butyrate as a ligand. The expression of GPR109A is silenced in colon cancer in humans, in a mouse model of intestinal/colon cancer, and in colon cancer cell lines. The tumor-associated silencing of GPR109A involves DNA methylation directly or indirectly. Reexpression of GPR109A in colon cancer cells induces apoptosis, but only in the presence of its ligands butyrate and nicotinate. Butyrate is an inhibitor of histone deacetylases, but apoptosis induced by activation of GPR109A with its ligands in colon cancer cells does not involve inhibition of histone deacetylation. The primary changes in this apoptotic process include down-regulation of Bcl-2, Bcl-xL, and cyclin D1 and up-regulation of death receptor pathway. In addition, GPR109A/butyrate suppresses nuclear factor-kappaB activation in normal and cancer colon cell lines as well as in normal mouse colon. These studies show that GPR109A mediates the tumor-suppressive effects of the bacterial fermentation product butyrate in colon.

Journal ArticleDOI
TL;DR: The data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification, and molecular classification therefore may aid diagnosis and can guide clinical decision making.
Abstract: Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.

Journal ArticleDOI
TL;DR: Oral NaHCO(3) selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer, suggesting that inhibition of this tumor acidity will reduce the incidence of in vivo metastases.
Abstract: The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO3 selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by 31 P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO3 therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO3 therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease. [Cancer Res 2009;69(6):2260–8]

Journal ArticleDOI
TL;DR: The data suggest that the strongly enhanced antitumor activity is mainly due to the differing but complementary mechanisms of action of trastuzumab and pertuzumAB, namely inhibition of HER2 dimerization and prevention of p95HER2 formation.
Abstract: The human epidermal growth factor receptor (HER) family plays an important role in cell survival and proliferation, and is implicated in oncogenesis. Overexpression of HER2 is associated with aggressive disease and poor prognosis. Trastuzumab is a humanized monoclonal antibody targeting HER2 and has proven survival benefit for women with HER2-positive early and metastatic breast cancer. Pertuzumab, another monoclonal antibody, is a HER2 dimerization inhibitor that binds to a different epitope on HER2 than trastuzumab and inhibits HER2 dimer formation with other HER family members such as HER3 and HER1. We investigated the antitumor activity of these agents alone and in combination in HER2-positive breast and non-small cell lung cancer xenografts. Our data show that the combination of trastuzumab and pertuzumab has a strongly enhanced antitumor effect and induces tumor regression in both xenograft models, something that cannot be achieved by either monotherapy. The enhanced efficacy of the combination was also observed after tumor progression during trastuzumab monotherapy. Near-IR fluorescence imaging experiments confirm that pertuzumab binding to tumors is not impaired by trastuzumab pretreatment. Furthermore, we show by in vitro assay that both trastuzumab and pertuzumab potently activate antibody-dependent cellular cytotoxicity. However, our data suggest that the strongly enhanced antitumor activity is mainly due to the differing but complementary mechanisms of action of trastuzumab and pertuzumab, namely inhibition of HER2 dimerization and prevention of p95HER2 formation.