scispace - formally typeset
Search or ask a question

Showing papers by "Jürg Bähler published in 1995"


Journal ArticleDOI
01 Sep 1995-Genetics
TL;DR: It is proposed that the rec8 gene encodes a protein required for linear element formation and that the different phenotypes of rec8-110 reflect direct and indirect consequences of the absence of regular linear elements.
Abstract: The fission yeast Schizosaccharomyces pombe does not form tripartite synaptonemal complexes during meiotic prophase, but axial core-like structures (linear elements). To probe the relationship between meiotic recombination and the structure, pairing, and segregation of meiotic chromosomes, we genetically and cytologically characterized the rec8-110 mutant, which is partially deficient in meiotic recombination. The pattern of spore viability indicates that chromosome segregation is affected in the mutant. A detailed segregational analysis in the rec8-110 mutant revealed more spores disomic for chromosome III than in a wild-type strain. Aberrant segregations are caused by precocious segregation of sister chromatids at meiosis I, rather than by nondisjunction as a consequence of lack of crossovers. In situ hybridization further showed that the sister chromatids are separated prematurely during meiotic prophase. Moreover, the mutant forms aberrant linear elements and shows a shortened meiotic prophase. Meiotic chromosome pairing in interstitial and centromeric regions is strongly impaired in rec8-110, whereas the chromosome ends are less deficient in pairing. We propose that the rec8 gene encodes a protein required for linear element formation and that the different phenotypes of rec8-110 reflect direct and indirect consequences of the absence of regular linear elements.

198 citations


Journal ArticleDOI
TL;DR: The prominent differentiations of microtubules and nuclei may be involved in the pairing, recombination, and segregation of meiotic chromosomes in S. pombe and S. versatilis and share basic characteristics in the organization of micro Tubules and the structure and behaviour of nuclei during their meiotic cell cycle.
Abstract: Meiotic prophase in Schizosaccharomyces pombe is characterized by striking nuclear movements and the formation of linear elements along chromosomes instead of tripartite synaptonemal complexes. We analysed the organization of nuclei and microtubules in cells of fission yeasts undergoing sexual differentiation. S. japonicus var. versatilis and S. pombe cells were studied in parallel, taking advantage of the better cytology in S. versatilis. During conjugation, microtubules were directed towards the mating projection. These microtubules seem to lead the haploid nuclei together in the zygote by interaction with the spindle pole bodies at the nuclear periphery. After karyogamy, arrays of microtubules emanating from the spindle pole body of the diploid nucleus extended to both cell poles. The same differentiated microtubule configuration was elaborated upon induction of azygotic meiosis in S. pombe. The cyclic movements of the elongated nuclei between the cell poles is reflected by a dynamic and coordinated shortening and lengthening of the two microtubule arrays. When the nucleus was at a cell end, one array was short while the other bridged the whole cell length. Experiments with inhibitors showed that microtubules are required for karyogamy and for the elongated shape and movement of nuclei during meiotic prophase. In both fission yeasts the SPBs and nucleoli are at the leading ends of the moving nuclei. Astral and cytoplasmic microtubules were also prominent during meiotic divisions and sporulation. We further show that in S. versatilis the linear elements formed during meiotic prophase are similar to those in S. pombe. Tripartite synaptonemal complexes were never detected. Taken together, these findings suggest that S. pombe and S. versatilis share basic characteristics in the organization of microtubules and the structure and behaviour of nuclei during their meiotic cell cycle. The prominent differentiations of microtubules and nuclei may be involved in the pairing, recombination, and segregation of meiotic chromosomes.

70 citations


Journal ArticleDOI
TL;DR: Biochemical analysis of the purified Sep1 protein demonstrates its ability to promote the polymerization of procine brain and authentic S.cerevisiae tubulin into flexible microtubules in vitro, and genetic analysis of double mutant strains containing a mutation in SEP1 and in one of the genes coding for alpha‐ or beta‐tubulin further suggests interaction between Sep1 and micro Tubulin.
Abstract: Saccharomyces cerevisiae cells lacking the SEP1 (also known as XRN1, KEM1, DST2, RAR5) gene function exhibit a number of phenotypes in cellular processes related to microtubule function. Mutant cells show increased sensitivity to the microtubule-destabilizing drug benomyl, increased chromosome loss, a karyogamy defect, impaired spindle pole body separation, and defective nuclear migration towards the bud neck. Analysis of the arrest morphology and of the survival during arrest strongly suggests a structural defect accounting for the benomyl hypersensitivity, rather than a regulatory defect in a checkpoint. Biochemical analysis of the purified Sep1 protein demonstrates its ability to promote the polymerization of procine brain and authentic S.cerevisiae tubulin into flexible microtubules in vitro. Furthermore, Sep1 co-sediments with these microtubules in sucrose cushion centrifugation. Genetic analysis of double mutant strains containing a mutation in SEP1 and in one of the genes coding for alpha- or beta-tubulin further suggests interaction between Sep1 and microtubules. Taken together these three lines of evidence constitute compelling evidence for a role of Sep1 as an accessory protein in microtubule function in the yeast S.cerevisiae.

57 citations