scispace - formally typeset
Search or ask a question
Author

Kamal A.R. Ismail

Bio: Kamal A.R. Ismail is an academic researcher from State University of Campinas. The author has contributed to research in topics: Heat transfer & Thermal conduction. The author has an hindex of 32, co-authored 139 publications receiving 3200 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of a numerical and experimental investigation realized on finned tubes with the objective of using them in thermal storage systems, based upon the pure conduction mechanism of heat transfer, the enthalpy formulation approach and the control volume method.
Abstract: This paper presents the results of a numerical and experimental investigation realized on finned tubes with the objective of using them in thermal storage systems. The model is based upon the pure conduction mechanism of heat transfer, the enthalpy formulation approach and the control volume method. The finite difference approximation and the alternating direction scheme are used to discretize the basic equations and the associated boundary and initial conditions. The model was validated by comparison with available results and additional experimental measurements realized by the authors. The number of fins, fin length, fin thickness, the degree of super heat and the aspect ratio of the annular spacing are found to influence the time for complete solidification, solidified mass fraction and the total stored energy. The results confirm the importance of the fins in delaying the undesirable effects of natural convection during the phase change processes. Also, this study indicates the strong influence of the annular space size, the radial length of the fin and the number of fins on the solidified mass fraction and the time for complete phase change. Based upon experimental observations and the tendencies of the numerical results, a metallic tube fitted with four–five fins of constant thickness equal to the tube wall thickness and of radial length around twice the tube diameter should be a compromise solution between efficiency, increase in the heat flow rate and the loss of available storage capacity.

387 citations

Journal ArticleDOI
TL;DR: In this paper, the results of a comparative numerical investigation on packed bed thermal models suitable for sensible and latent heat thermal storage systems were presented. But the results obtained were compared, analysed and discussed.
Abstract: This paper presents the results of a comparative numerical investigation on packed bed thermal models suitable for sensible and latent heat thermal storage systems. Four basic groups of models were investigated, that is, the continuous solid phase models, Schumann's model, the single phase models and the thermal diffusion models or models with thermal gradient inside the particles. For each of these models a computer code was written and optimized. The models were first evaluated in relation to the computational time consumed to solve a specific test problem. The models were then compared in relation to the influence of particle size, void fraction, particle material, flow rate variations, working fluid inlet temperature variations and finally wall thermal losses. The results obtained were compared, analysed and discussed

256 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system, where the condenser and the evaporator were divided into a number of control volumes.
Abstract: This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, energy and momentum balances for each control volume. As the expansion valve and the compressor both have very small thermal inertia, the steady state models were applied for these components. Transient and steady state models numerical predictions were compared and good agreement was found. Further simulations were performed with the objective of verifying the possibility of controlling the refrigeration system and the superheating of the refrigerant in the evaporator outlet by varying the compressor speed and the throttling valve sectional area. The results indicate that the proposed models can be used to formulate an algorithm for controlling a refrigeration system.

202 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical model to simulate a storage system composed of spherical capsules filled with PCM placed inside a cylindrical tank fitted with a working fluid circulation system to charge and discharge the storage tank is presented.
Abstract: A numerical model to simulate a storage system composed of spherical capsules filled with PCM placed inside a cylindrical tank fitted with a working fluid circulation system to charge and discharge the storage tank. The simplified transient one-dimensional model is based on dividing the tank into a number of axial layers whose thickness is always equal or larger than a capsule diameter. It is also assumed that the temperature of the working fluid is uniform and equal to the average temperature of the layer. The solidification process inside the spherical capsule is treated by using a conductive one-dimensional phase change model with convective boundary condition on the external surface. The convection present in the liquid phase of the PCM is treated by using an effective heat conduction coefficient in the liquid region of the PCM. The solution of the differential equations is realized by the finite difference approximation and a moving grid inside the spherical capsules. The geometrical and operational parameters of the system are investigated both numerically and experimentally and their influence on the charging and discharging times was investigated.

181 citations

Journal ArticleDOI
01 Jan 2008
TL;DR: In this article, a comparison between the thermal efficiency of two glass windows one filled with an absorbing gas and the other with a PCM and exposed to solar radiation in a hot climate is done.
Abstract: From the thermal point of view, windows represent the weak link between the internal and external ambients of a room. In cold climates, they are responsible for 10–25% of the heat lost from the heated ambient to the external atmosphere. In hot climates, the excessive solar radiation entering the internal ambient through the windows leads to increasing the cooling load of the refrigeration system. The use of absorbing gases filling the gap between glass sheets appears to be an alternative solution for thermally insulated glass windows. The other options one may incorporate filling materials such as silica aerogel or a PCM. In this work, a comparison between the thermal efficiency of two glass windows one filled with an absorbing gas and the other with a PCM and exposed to solar radiation in a hot climate is done. To model double glass window filled with infrared absorbing gases, a CW real gas model is used. A radiative convective conductive model and a radiative conductive model were investigated. Three mixtures of gases were used; a strongly absorbing gas mixture, an intermediate absorbing gas mixture and a transparent to infrared radiation mixture. To model the double glass window filled with a PCM, a relatively simple and effective radiation conduction one dimensional formulation is used. Heat transfer through the window is calculated and the total heat gain coefficients are compared and discussed.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.
Abstract: Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid–liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references.

4,019 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the phase change materials (PCM) and their application in energy storage is presented, where the main advantages of encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs.
Abstract: Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed.

2,636 citations

Journal ArticleDOI
TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Abstract: This paper reviews the development of latent heat thermal energy storage systems studied detailing various phase change materials (PCMs) investigated over the last three decades, the heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy and the formulation of the phase change problem. It also examines the geometry and configurations of PCM containers and a series of numerical and experimental tests undertaken to assess the effects of parameters such as the inlet temperature and the mass flow rate of the heat transfer fluid (HTF). It is concluded that most of the phase change problems have been carried out at temperature ranges between 0 °C and 60 °C suitable for domestic heating applications. In terms of problem formulation, the common approach has been the use of enthalpy formulation. Heat transfer in the phase change problem was previously formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for. There is no standard method (such as British Standards or EU standards) developed to test for PCMs, making it difficult for comparison to be made to assess the suitability of PCMs to particular applications. A unified platform such as British Standards, EU standards needs to be developed to ensure same or similar procedure and analysis (performance curves) to allow comparison and knowledge gained from one test to be applied to another.

1,630 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art of phase change materials (PCMs) for storing solar energy is discussed. But, prior to the large-scale practical application of this technology, it is necessary to resolve numerous problems at the research and development stage.
Abstract: The continuous increase in the level of greenhouse gas emissions and the climb in fuel prices are the main driving forces behind efforts to more effectively utilise various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. However, the large-scale utilisation of this form of energy is possible only if the effective technology for its storage can be developed with acceptable capital and running costs. One of prospective techniques of storing solar energy is the application of phase change materials (PCMs). Unfortunately, prior to the large-scale practical application of this technology, it is necessary to resolve numerous problems at the research and development stage. This paper looks at the current state of research in this particular field, with the main focus being on the assessment of the thermal properties of various PCMs, methods of heat transfer enhancement and design configurations of heat storage facilities to be used as a part of solar passive and active space heating systems, greenhouses and solar cooking.

1,173 citations