scispace - formally typeset
Search or ask a question

Showing papers by "Kathleen L. Gould published in 2014"


Journal ArticleDOI
TL;DR: It is shown that Cdk1 promotes an initial step by phosphorylating and promoting Byr4 removal from spindle pole bodies in metaphase to prime the onset of cytokinesis.
Abstract: In Schizosaccharomyces pombe, late mitotic events are coordinated with cytokinesis by the septation initiation network (SIN), an essential spindle pole body (SPB)-associated kinase cascade, which controls the formation, maintenance, and constriction of the cytokinetic ring. It is not fully understood how SIN initiation is temporally regulated, but it depends on the activation of the GTPase Spg1, which is inhibited during interphase by the essential bipartite GTPase-activating protein Byr4-Cdc16. Cells are particularly sensitive to the modulation of Byr4, which undergoes cell cycle-dependent phosphorylation presumed to regulate its function. Polo-like kinase, which promotes SIN activation, is partially responsible for Byr4 phosphorylation. Here we show that Byr4 is also controlled by cyclin-dependent kinase (Cdk1)-mediated phosphorylation. A Cdk1 nonphosphorylatable Byr4 phosphomutant displays severe cell division defects, including the formation of elongated, multinucleate cells, failure to maintain the cytokinetic ring, and compromised SPB association of the SIN kinase Cdc7. Our analyses show that Cdk1-mediated phosphoregulation of Byr4 facilitates complete removal of Byr4 from metaphase SPBs in concert with Plo1, revealing an unexpected role for Cdk1 in promoting cytokinesis through activation of the SIN pathway.

17 citations


Journal ArticleDOI
TL;DR: A genetic screen revealed that deletion of ubp8, encoding the Spt-Ada-Gcn5-Acetyl transferase (SAGA) complex associated DUB, suppressed temperature-sensitive phenotypes of APC/C mutants and concluded that Ubp8 antagonizes APc/C function indirectly by modulating H2B ubiquitination status.
Abstract: Ubiquitination and deubiquitination of proteins are reciprocal events involved in many cellular processes, including the cell cycle. During mitosis, the metaphase to anaphase transition is regulated by the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C). Although the E3 ubiquitin ligase function of the APC/C has been well characterized, it is not clear whether deubiquitinating enzymes (DUBs) play a role in reversing APC/C substrate ubiquitination. Here we performed a genetic screen to determine what DUB, if any, antagonizes the function of the APC/C in the fission yeast Schizosaccharomyces pombe. We found that deletion of ubp8, encoding the Spt-Ada-Gcn5-Acetyl transferase (SAGA) complex associated DUB, suppressed temperature-sensitive phenotypes of APC/C mutants cut9-665, lid1-6, cut4-533, and slp1-362. Our analysis revealed that Ubp8 antagonizes APC/C function in a mechanism independent of the spindle assembly checkpoint and proteasome activity. Notably, suppression of APC/C mutants was linked to loss of Ubp8 catalytic activity and required histone H2B ubiquitination. On the basis of these data, we conclude that Ubp8 antagonizes APC/C function indirectly by modulating H2B ubiquitination status.

13 citations


Journal ArticleDOI
TL;DR: Using a combination of yeast genetics, structural approaches, and RNA binding assays, it is shown that R1, R2, and D3 are all required for the function of Cdc5 in cells and that the N-terminus of CDC5 binds RNA in vitro.
Abstract: The spliceosome is a dynamic macromolecular machine composed of five small nuclear ribonucleoparticles (snRNPs), the NineTeen Complex (NTC), and other proteins that catalyze the removal of introns mature to form the mature message. The NTC, named after its founding member Saccharomyces cerevisiae Prp19, is a conserved spliceosome subcomplex composed of at least nine proteins. During spliceosome assembly, the transition to an active spliceosome correlates with stable binding of the NTC, although the mechanism of NTC function is not understood. Schizosaccharomyces pombe Cdc5, a core subunit of the NTC, is an essential protein required for pre-mRNA splicing. The highly conserved Cdc5 N-terminus contains two canonical Myb (myeloblastosis) repeats (R1 and R2) and a third domain (D3) that was previously classified as a Myb-like repeat. Although the N-terminus of Cdc5 is required for its function, how R1, R2, and D3 each contribute to functionality is unclear. Using a combination of yeast genetics, structural approaches, and RNA binding assays, we show that R1, R2, and D3 are all required for the function of Cdc5 in cells. We also show that the N-terminus of Cdc5 binds RNA in vitro. Structural and functional analyses of Cdc5-D3 show that, while this domain does not adopt a Myb fold, Cdc5-D3 preferentially binds double-stranded RNA. Our data suggest that the Cdc5 N-terminus interacts with RNA structures proposed to be near the catalytic core of the spliceosome.

6 citations


Book ChapterDOI
TL;DR: The general MAP purification method is described in detail, and how it can be applied to a specific protein using the human Cdc14B phosphatase as an example.
Abstract: Knowledge of an individual protein's modifications, binding partners, and localization is essential for understanding complex biological networks. We recently described a fluorescent protein-based (mVenus) multifunctional affinity purification (MAP) tag that can be used both to purify a given protein and determine its localization (Ma et al., Mol Cell Proteomics 11:501-511, 2012). MAP purified protein complexes can be further analyzed to identify binding partners and posttranslational modifications by LC-MS/MS. The MAP approach offers rapid FACS-selection of stable clonal cell lines based on the expression level/fluorescence of the MAP-protein fusion. The MAP tag is highly efficient and shows little variability between proteins. Here we describe the general MAP purification method in detail, and show how it can be applied to a specific protein using the human Cdc14B phosphatase as an example.

2 citations