scispace - formally typeset
Search or ask a question

Showing papers by "Kenneth H. Wolfe published in 2017"


Journal ArticleDOI
01 May 2017-Genetics
TL;DR: This review summarizes knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching.
Abstract: Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?

67 citations


Journal ArticleDOI
TL;DR: This work identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT) locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus.
Abstract: Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements Surprisingly, Z parabailii has a full sexual cycle and is genetically haploid It goes through mating-type switching and autodiploidization, followed by immediate sporulation We identified the key evolutionary event that enabled Z parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT) locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids The events that occurred in Z parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae

61 citations


Journal ArticleDOI
TL;DR: Conservation of synteny demonstrates that, despite changes in its gene content, a single orthologous locus (MAT/MTL) has controlled cell type throughout ascomycete evolution.
Abstract: The fungal phylum Ascomycota comprises three subphyla: Saccharomycotina, Pezizomycotina, and Taphrinomycotina. In many Saccharomycotina species, cell identity is determined by genes at the MAT (mating-type) locus; mating occurs between MATa and MATα cells. Some species can switch between MATa and MATα mating types. Switching in the Saccharomycotina originated in the common ancestor of the Saccharomycetaceae, Pichiaceae, and Metschnikowiaceae families, as a flip/flop mechanism that inverted a section of chromosome. Switching was subsequently lost in the Metschnikowiaceae, including Candida albicans, but became more complex in the Saccharomycetaceae when the mechanism changed from inversion to copy-and-paste between HML/HMR and MAT. Based on their phylogenetic closeness and the similarity of their MTL (mating-type like) loci, some Metschnikowia species may provide useful models for the sexual cycles of Candida species. Conservation of synteny demonstrates that, despite changes in its gene content, a single orthologous locus (MAT/MTL) has controlled cell type throughout ascomycete evolution.

19 citations


Journal ArticleDOI
TL;DR: This study used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence.
Abstract: Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production.IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains.

16 citations


Journal ArticleDOI
TL;DR: The transcriptomes of haploid and diploid O. polymorpha are characterized by RNAseq in rich and nitrogen-deficient media, and it is found that there are no constitutively a-specific or α-specific genes other than the MAT genes themselves.
Abstract: In haploid cells of Ogataea (Hansenula) polymorpha an environmental signal, nitrogen starvation, induces a reversible change in the structure of a chromosome. This process, mating-type switching, inverts a 19-kb DNA region to place either MATa or MATα genes under centromeric repression of transcription, depending on the orientation of the region. Here, we investigated the genetic pathway that controls switching. We characterized the transcriptomes of haploid and diploid O. polymorpha by RNAseq in rich and nitrogen-deficient media, and found that there are no constitutively a-specific or α-specific genes other than the MAT genes themselves. We mapped a switching defect in a sibling species (O. parapolymorpha strain DL-1) by interspecies bulk segregant analysis to a frameshift in the transcription factor EFG1, which in Candida albicans regulates filamentous growth and white-opaque switching. Gene knockout, overexpression and ChIPseq experiments show that EFG1 regulates RME1, which in turn regulates STE12, to achieve mating-type switching. All three genes are necessary both for switching and for mating. Overexpression of RME1 or STE12 is sufficient to induce switching without a nitrogen depletion signal. The homologous recombination genes RAD51 and RAD17 are also necessary for switching. The pathway controlling switching in O. polymorpha shares no components with the regulation of HO in S. cerevisiae, which does not involve any environmental signal, but it shares some components with mating-type switching in Kluyveromyces lactis and with white-opaque phenotypic switching in C. albicans.

11 citations