scispace - formally typeset
Search or ask a question

Showing papers by "Kenneth Sassen published in 1996"


Journal ArticleDOI
TL;DR: In this article, the authors derived from empirical and model-derived particle size distributions that rely on a combination of Rayleigh and conjugate gradient-fast Fourier transform scattering theory approaches to relate (equivalent) radar reflectivity factors (Ze) Z (mm6 m−3) to liquid water content (LWC, g m− 3) and ice water content(IWC, mg m −3): Z = (3.6/Nd)LWC1.7 Ze0.83 for cirrus clouds using the dielectric constant appropriate for ice
Abstract: W-band (3.2-mm) radars are seeing increasing utilization as a result of improving microwave technologies and the increased research emphasis being given to nonprecipitating clouds. This niche is exemplified by the study of the radiatively important stratus and cirrus clouds, which essentially require the application of Rayleigh and nonspherical scattering solutions, respectively. To increase the utility of such studies, the authors provide the following relations derived from empirical and model-derived particle size distributions that rely on a combination of Rayleigh and conjugate gradient-fast Fourier transform scattering theory approaches to relate (equivalent) radar reflectivity factors (Ze) Z (mm6 m−3) to liquid water content (LWC, g m−3) and ice water content (IWC, mg m−3): Z = (3.6/Nd)LWC1.8 for stratus clouds, where Nd (cm−3) is the droplet concentration, and IWC = 21.7 Ze0.83 for cirrus clouds using the dielectric constant appropriate for ice, which is valid over a IWC range of 3–100 mg...

55 citations


01 Jan 1996
TL;DR: In this article, a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986 were used to determine cloud radiative and physical characteristics.
Abstract: Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.

4 citations