scispace - formally typeset
Search or ask a question

Showing papers by "Kimberly D. Miller published in 2021"


Journal ArticleDOI
TL;DR: In the United States, the cancer death rate has dropped continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment as mentioned in this paper.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.

9,661 citations


Journal ArticleDOI
TL;DR: For example, this paper found that malignant brain tumor incidence is highest in males and non-Hispanic White individuals, whereas the rates for nonmalignant tumors are highest in females and non Hispanic Black individuals.
Abstract: Brain and other central nervous system (CNS) tumors are among the most fatal cancers and account for substantial morbidity and mortality in the United States. Population-based data from the Central Brain Tumor Registry of the United States (a combined data set of the National Program of Cancer Registries [NPCR] and Surveillance, Epidemiology, and End Results [SEER] registries), NPCR, National Vital Statistics System and SEER program were analyzed to assess the contemporary burden of malignant and nonmalignant brain and other CNS tumors (hereafter brain) by histology, anatomic site, age, sex, and race/ethnicity. Malignant brain tumor incidence rates declined by 0.8% annually from 2008 to 2017 for all ages combined but increased 0.5% to 0.7% per year among children and adolescents. Malignant brain tumor incidence is highest in males and non-Hispanic White individuals, whereas the rates for nonmalignant tumors are highest in females and non-Hispanic Black individuals. Five-year relative survival for all malignant brain tumors combined increased between 1975 to 1977 and 2009 to 2015 from 23% to 36%, with larger gains among younger age groups. Less improvement among older age groups largely reflects a higher burden of glioblastoma, for which there have been few major advances in prevention, early detection, and treatment the past 4 decades. Specifically, 5-year glioblastoma survival only increased from 4% to 7% during the same time period. In addition, important survival disparities by race/ethnicity remain for childhood tumors, with the largest Black-White disparities for diffuse astrocytomas (75% vs 86% for patients diagnosed during 2009-2015) and embryonal tumors (59% vs 67%). Increased resources for the collection and reporting of timely consistent data are critical for advancing research to elucidate the causes of sex, age, and racial/ethnic differences in brain tumor occurrence, especially for rarer subtypes and among understudied populations.

261 citations


Journal ArticleDOI
TL;DR: The second largest racial/ethnic group in the continental United States and Hawaii, accounting for 18% (60.6 million) of the total population, is the Hispanic/Latino population as discussed by the authors.
Abstract: The Hispanic/Latino population is the second largest racial/ethnic group in the continental United States and Hawaii, accounting for 18% (60.6 million) of the total population. An additional 3 million Hispanic Americans live in Puerto Rico. Every 3 years, the American Cancer Society reports on cancer occurrence, risk factors, and screening for Hispanic individuals in the United States using the most recent population-based data. An estimated 176,600 new cancer cases and 46,500 cancer deaths will occur among Hispanic individuals in the continental United States and Hawaii in 2021. Compared to non-Hispanic Whites (NHWs), Hispanic men and women had 25%-30% lower incidence (2014-2018) and mortality (2015-2019) rates for all cancers combined and lower rates for the most common cancers, although this gap is diminishing. For example, the colorectal cancer (CRC) incidence rate ratio for Hispanic compared with NHW individuals narrowed from 0.75 (95% CI, 0.73-0.78) in 1995 to 0.91 (95% CI, 0.89-0.93) in 2018, reflecting delayed declines in CRC rates among Hispanic individuals in part because of slower uptake of screening. In contrast, Hispanic individuals have higher rates of infection-related cancers, including approximately two-fold higher incidence of liver and stomach cancer. Cervical cancer incidence is 32% higher among Hispanic women in the continental US and Hawaii and 78% higher among women in Puerto Rico compared to NHW women, yet is largely preventable through screening. Less access to care may be similarly reflected in the low prevalence of localized-stage breast cancer among Hispanic women, 59% versus 67% among NHW women. Evidence-based strategies for decreasing the cancer burden among the Hispanic population include the use of culturally appropriate lay health advisors and patient navigators and targeted, community-based intervention programs to facilitate access to screening and promote healthy behaviors. In addition, the impact of the COVID-19 pandemic on cancer trends and disparities in the Hispanic population should be closely monitored.

118 citations


Journal ArticleDOI
01 Jan 2021
TL;DR: Declining trends observed in the incidence of primary malignant and nonmalignant brain and other central nervous system tumors may be attributable to recent changes in diagnostic classification and the coding practices stemming from those changes.
Abstract: Background There are over 100 histologically distinct types of primary malignant and nonmalignant brain and other central nervous system (CNS) tumors. Our study presents recent trends in the incidence of these tumors using an updated histology recode that incorporates major diagnostic categories listed in the 2016 World Health Organization Classification of Tumours of the CNS. Methods We used data from the SEER-21 registries for patients of all ages diagnosed in 2000-2017. We calculated age-adjusted incidence rates and fitted a joinpoint regression to the observed data to estimate the Annual Percent Change and 95% confidence intervals over the period 2000-2017. Results There were 315,184 new malignant (34.2%; 107,890) and nonmalignant (65.8%; 207,294) brain tumor cases during 2004-2017. Nonmalignant meningioma represented 46.5% (146,498) of all brain tumors (malignant and nonmalignant), while glioblastoma represented 50.8% (54,832) of all malignant tumors. Temporal trends were stable or declining except for nonmalignant meningioma (0.7% per year during 2004-2017). Several subtypes presented decreases in trends in the most recent period (2013-2017): diffuse/anaplastic astrocytoma (-1.3% per year, oligodendroglioma (-2.6%), pilocytic astrocytoma (-3.8%), and malignant meningioma (-5.9%). Conclusions Declining trends observed in our study may be attributable to recent changes in diagnostic classification and the coding practices stemming from those changes. The recode used in this study enables histology reporting to reflect the changes. It also provides a first step toward the reporting of malignant and nonmalignant brain and other CNS tumors in the Surveillance, Epidemiology, and End Results (SEER) Program by clinically relevant histology groupings.

16 citations



Journal ArticleDOI
TL;DR: In this article, a validation study was conducted comparing current projection methods (vector autoregression for incidence; joinpoint regression for mortality) with the Bayes state-space method and novel Joinpoint algorithms.
Abstract: Background: The American Cancer Society (ACS) and the NCI collaborate every 5 to 8 years to update the methods for estimating the numbers of new cancer cases and deaths in the current year for the U.S. and individual states. Herein, we compare our current projection methodology with the next generation of statistical models. Methods: A validation study was conducted comparing current projection methods (vector autoregression for incidence; Joinpoint regression for mortality) with the Bayes state-space method and novel Joinpoint algorithms. Incidence data from 1996–2010 were projected to 2014 using two inputs: modeled data and observed data with modeled where observed were missing. For mortality, observed data from 1995 to 2009, 1996 to 2010, 1997 to 2011, and 1998 to 2012, each projected 3 years forward to 2012 to 2015. Projection methods were evaluated using the average absolute relative deviation (AARD) between observed counts (2014 for incidence, 2012–2015 for mortality) and estimates for 47 cancer sites nationally and 21 sites by state. Results: A novel Joinpoint model provided a good fit for both incidence and mortality, particularly for the most common cancers in the U.S. Notably, the AARD for cancers with cases in 2014 exceeding 49,000 for this model was 3.4%, nearly half that of the current method (6.3%). Conclusions: A data-driven Joinpoint algorithm had versatile performance at the national and state levels and will replace the ACS9s current methods. Impact: This methodology provides estimates of cancer data that are not available for the current year, thus continuing to fill an important gap for advocacy, research, and public health planning.

8 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared the current county-level model developed in 2012 (M0) with three new models, including a state-level mixed effect model (M1) and two statelevel hierarchical Bayes models with varying random effects (M2 and M3).
Abstract: Background: The American Cancer Society (ACS) and the NCI collaborate every 5–8 years to update the methods for estimating numbers of new cancer cases and deaths in the current year in the United States and in every state and the District of Columbia. In this article, we reevaluate the statistical method for estimating unavailable historical incident cases which are needed for projecting the current year counts. Methods: We compared the current county-level model developed in 2012 (M0) with three new models, including a state-level mixed effect model (M1) and two state-level hierarchical Bayes models with varying random effects (M2 and M3). We used 1996–2014 incidence data for 16 sex-specific cancer sites to fit the models. An average absolute relative deviation (AARD) comparing the observed with the model-specific predicted counts was calculated for each site. Models were also cross-validated for six selected sex-specific cancer sites. Results: For the cross-validation, the AARD ranged from 2.8% to 33.0% for M0, 3.3% to 31.1% for M1, 6.6% to 30.5% for M2, and 10.4% to 393.2% for M3. M1 encountered the least technical issues in terms of model convergence and running time. Conclusions: The state-level mixed effect model (M1) was overall superior in accuracy and computational efficiency and will be the new model for the ACS current year projection project. Impact: In addition to predicting the unavailable state-level historical incidence counts for cancer surveillance, the updated algorithms have broad applicability for disease mapping and other activities of public health planning, advocacy, and research.

4 citations