scispace - formally typeset
Search or ask a question

Showing papers by "Klaus Palme published in 2004"


Journal ArticleDOI
29 Oct 2004-Science
TL;DR: The results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.
Abstract: Polar transport-dependent local accumulation of auxin provides positional cues for multiple plant patterning processes. This directional auxin flow depends on the polar subcellular localization of the PIN auxin efflux regulators. Overexpression of the PINOID protein kinase induces a basal-to-apical shift in PIN localization, resulting in the loss of auxin gradients and strong defects in embryo and seedling roots. Conversely, pid loss of function induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence apex, accompanied by defective organogenesis. Our results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.

756 citations


Journal ArticleDOI
TL;DR: Intracellular localisation of small GTPases and functional studies using dominant mutant versions of Arf and Rab GTPase are defining novel plant-specific membrane compartments, especially those that participate in endosomal vesicle trafficking.

138 citations


Journal ArticleDOI
TL;DR: From gene expression and electrophysiological data, it is suggested that auxin regulation of KAT1 is involved in elongation growth of Arabidopsis and a role for KAT2 in the auxin-controlled vascular patterning of leaves is discussed.
Abstract: The transcript abundance of the K+-channel gene ZMK1 (Zea mays K+ channel 1) in maize coleoptiles is controlled by the phytohormone auxin. Thus, ZMK1 is thought to function in auxin-regulated coleoptile elongation, as well as during gravitropism and phototropism. To investigate related growth phenomena in the dicotyledonous plant Arabidopsis thaliana, we screened etiolated seedlings for auxin-induced K+-channel genes. Among the members of the Shaker-like K+ channels, we thereby identified transcripts of the inward rectifiers, KAT1 (K+ transporter of Arabidopsis thaliana) and KAT2, to be upregulated by auxin. The phloem-associated KAT2 was localised in cotyledons and the apical part of etiolated seedlings. In contrast, the K+-channel gene KAT1 was expressed in the cortex and epidermis of etiolated hypocotyls, as well as in flower stalks. Furthermore, KAT1 was induced by active auxins in auxin-sensitive tissues characterised by rapid cell elongation. Applying the patch-clamp technique to protoplasts of etiolated hypocotyls, we correlated the electrical properties of K+ currents with the expression profile of K+-channel genes. In KAT1-knockout mutants, K+ currents after auxin stimulation were characterised by reduced amplitudes. Thus, this change in the electrical properties of the K+-uptake channel in hypocotyl protoplasts resulted from an auxin-induced increase of active KAT1 proteins. The loss of KAT1-channel subunits, however, did not affect the auxin-induced growth rate of hypocotyls, pointing to compensation by residual, constitutive K+ transporters. From gene expression and electrophysiological data, we suggest that auxin regulation of KAT1 is involved in elongation growth of Arabidopsis. Furthermore, a role for KAT2 in the auxin-controlled vascular patterning of leaves is discussed.

106 citations


Journal ArticleDOI
TL;DR: It is proposed that proteasome-dependent programmed proteolysis is required to maintain the meristem integrity both in the shoot and in the root.
Abstract: In higher plants, post-embryonic development is dependent on the activity of the root and shoot apical meristem (RAM and SAM). The quiescent center (QC) in the RAM and the organizing center (OC) in the SAM are known to be essential for the maintenance of meristematic activity. To understand the mechanism that maintains post-embryonic meristems, we isolated an Arabidopsis mutant, halted root ( hlr ). In this mutant, the cellular organization was disrupted in post-embryonic meristems both in the root and in the shoot, and their meristematic activity was reduced or became abnormal. We showed that the mutant RAM lost its QC identity after germination, which was specified during embryogenesis, whereas the identity of differentiated tissues was maintained. In the post-embryonic SAM, the expression pattern of a typical OC marker gene, WUSCHEL , was disturbed in the mutant. These observations indicate that the HLR gene is essential to maintain the cellular organization and normal nature of the RAM and SAM. The HLR gene encodes RPT2a, which is a subunit of the 26S proteasome that degrades key proteins in diverse cellular processes. We showed that the HLR gene was expressed both in the RAM and in the SAM, including in the QC and the OC, respectively, and that the activity of proteasomes were reduced in the mutant. We propose that proteasome-dependent programmed proteolysis is required to maintain the meristem integrity both in the shoot and in the root.

94 citations


Journal ArticleDOI
TL;DR: It is suggested that a lack of AtPIN1 function affects shoot differentiation and development, but does not influence in vitro regeneration of plants.
Abstract: Suspension cultures from Arabidopsis thaliana wild type and AtPIN1-deficient lines were initiated and maintained for more than 3 years. A protocol for efficient regeneration from long-term suspension cultures was established. Arabidopsis wild-type and respectively AtPIN1 mutant plants have been regenerated from these cultures and characterized. Additionally, transgenic suspension cultures expressing the uidA (β -glucuronidase) reporter gene under the control of AtPIN1 promoter have been used for morphogenic studies. Our studies suggest that a lack of AtPIN1 function affects shoot differentiation and development, but does not influence in vitro regeneration of plants.