scispace - formally typeset
Search or ask a question

Showing papers by "L. Maraschi published in 2009"


Journal ArticleDOI
V. A. Acciari1, E. Aliu2, T. C. Arlen3, Manuel A. Bautista4  +382 moreInstitutions (62)
24 Jul 2009-Science
TL;DR: Radio and VHE observations of the radio galaxy Messier 87 are revealed, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of theRadio flux from its nucleus, implying that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
Abstract: The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

269 citations


Journal ArticleDOI
TL;DR: In this paper, the gamma-ray emission from three radio-loud narrow-line Seyfert 1 galaxies was detected with Fermi/LAT, and they may form an emerging new class of gamma ray active galactic nuclei (AGN).
Abstract: We report the discovery with Fermi/LAT of gamma-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z=0.409), 1H 0323+342 (z=0.061) and PKS 2004-447 (z=0.24). In addition to PMN J0948+0022 (z=0.585), the first source of this type to be detected in gamma rays, they may form an emerging new class of gamma-ray active galactic nuclei (AGN). These findings can have strong implications on our knowledge about relativistic jets and the unified model of AGN.

265 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope of high-energy gamma-ray emission from the peculiar quasar PMN J0948+0022 (z=0.5846).
Abstract: We report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope of high-energy gamma-ray emission from the peculiar quasar PMN J0948+0022 (z=0.5846). The optical spectrum of this object exhibits rather narrow Hbeta (FWHM(Hbeta) ~ 1500 km s^-1), weak forbidden lines and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at high Eddington ratio. The radio loudness and variability of the compact radio core indicates the presence of a relativistic jet. Quasi simultaneous radio-optical-X-ray and gamma-ray observations are presented. Both radio and gamma-ray emission (observed over 5-months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broad band spectral energy distribution (SED) and, in particular, the gamma-ray spectrum measured by Fermi are similar to those of more powerful FSRQ. A comparison of the radio and gamma-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and gamma-ray power, with respect to other FSRQ. The physical parameters obtained from modelling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini (2008). We suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.

200 citations


Journal ArticleDOI
Jelena Aleksić1, L. A. Antonelli2, P. Antoranz3, Michael Backes4  +156 moreInstitutions (22)
TL;DR: In this paper, the authors reproduce the observed spectral energy density by using the structured jet (spine-layer) model which has previously been adopted to explain the high-energy emission of radio galaxies.
Abstract: The Perseus galaxy cluster was observed by the MAGIC Cherenkov telescope for a total effective time of 24.4 hr during 2008 November and December. The resulting upper limits on the gamma-ray emission above 100 GeV are in the range of 4.6 to 7.5 x 10^{-12} cm^{-2} s^{-1} for spectral indices from -1.5 to -2.5, thereby constraining the emission produced by cosmic rays, dark matter annihilations, and the central radio galaxy NGC1275. Results are compatible with cosmological cluster simulations for the cosmic-ray-induced gamma-ray emission, constraining the average cosmic ray-to-thermal pressure to <4% for the cluster core region (<8% for the entire cluster). Using simplified assumptions adopted in earlier work (a power-law spectrum with an index of -2.1, constant cosmic ray-to-thermal pressure for the peripheral cluster regions while accounting for the adiabatic contraction during the cooling flow formation), we would limit the ratio of cosmic ray-to-thermal energy to E_CR/E_th<3%. The upper limit also translates into a level of gamma-ray emission from possible annihilations of the cluster dark matter (the dominant mass component) that is consistent with boost factors of ~10^4 for the typically expected dark matter annihilation-induced emission. Finally, the upper limits obtained for the gamma-ray emission of the central radio galaxy NGC1275 are consistent with the recent detection by the Fermi-LAT satellite. Due to the extremely large Doppler factors required for the jet, a one-zone synchrotron self-Compton model is implausible in this case. We reproduce the observed spectral energy density by using the structured jet (spine-layer) model which has previously been adopted to explain the high-energy emission of radio galaxies.

132 citations


Journal ArticleDOI
TL;DR: In this paper, a multi-wavelength campaign from radio to gamma rays was carried out between the end of March and the beginning of July 2009, which confirmed the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.
Abstract: Following the recent discovery of gamma rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z=0.5846), we started a multiwavelength campaign from radio to gamma rays, which was carried out between the end of March and the beginning of July 2009. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to gamma-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the gamma-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day-scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

93 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive spectral analysis of the six XMM-Newton observations of the source (for a total of ~200 ks), focusing on the detailed and systematic search for absorption features in the high-energy data.
Abstract: There is growing evidence for the presence of blueshifted Fe K absorption lines in a number of radio-quiet AGNs and QSOs. These may be fundamental to probe flow dynamics near supermassive black holes. Here we aim at verifying and better characterising the existence of such Fe K absorption at ~8-10 keV in the luminous Seyfert 1 galaxy Mrk509, one of the most promising target for these studies. We present a comprehensive spectral analysis of the six XMM-Newton observations of the source (for a total of ~200 ks), focusing on the detailed and systematic search for absorption features in the high-energy data. We detect several absorption features at rest-frame energies ~8-8.5 keV and ~9.7 keV. The lines are consistent with being produced by H-like iron Ka and Kb shell absorptions associated with an outflow with mildly relativistic velocity of ~0.14-0.2 c. The lines are found to be variable in energy and, marginally in intensity, implying that variations in either the column density, geometry and/or ionization structure of the outflow are common in this source.

85 citations


Journal ArticleDOI
V. A. Acciari1, E. Aliu2, T. Aune3, M. Beilicke4  +225 moreInstitutions (42)
TL;DR: In this paper, the results of two coordinated multi-wavelength campaigns that focused on the blazar Markarian 421 during its 2006 and 2008 outbursts were reported, where UV and X-ray data were obtained using the XMM-Newton satellite, while gamma-ray observations were obtained utilizing three imaging atmospheric Cerenkov telescopes, the Whipple 10 m telescope and VERITAS, both based in Arizona, as well as the MAGIC telescope, based on La Palma in the Canary Islands.
Abstract: We report on the results of two coordinated multiwavelength campaigns that focused on the blazar Markarian 421 during its 2006 and 2008 outbursts These campaigns obtained UV and X-ray data using the XMM-Newton satellite, while the gamma-ray data were obtained utilizing three imaging atmospheric Cerenkov telescopes, the Whipple 10 m telescope and VERITAS, both based in Arizona, as well as the MAGIC telescope, based on La Palma in the Canary Islands The coordinated effort between the gamma-ray groups allowed for truly simultaneous data in UV/X-ray/gamma-ray wavelengths during a significant portion of the XMM-Newton observations This simultaneous coverage allowed for a reliable search for correlations between UV, X-ray, and gamma-ray variability over the course of the observations Investigations of spectral hysteresis and modeling of the spectral energy distributions are also presented

67 citations


Journal ArticleDOI
TL;DR: In this paper, the authors constructed the first sample of blazars selected at both hard X-rays and gamma-rays, and found a luminosity dependence of the spectral slopes at both energies.
Abstract: Using public \fermi LAT and \swift BAT observations, we constructed the first sample of blazars selected at both hard X-rays and gamma-rays. Studying its spectral properties, we find a luminosity dependence of the spectral slopes at both energies. Specifically, luminous blazars, generally classified as FSRQs, have {\it hard} continua in the medium-hard X-ray range but {\it soft} continua in the LAT gamma-ray range (photon indices $\Gamma_X$ \ltsima 2 and $\Gamma_G$ \gtsima 2), while lower luminosity blazars, classified as BL Lacs, have opposite behavior, i.e., {\it soft} X-ray and {\it hard} gamma-ray continua ($\Gamma_X$ \gtsima 2.4 and $\Gamma_G < 2$). The trends are confirmed by detailed Monte Carlo simulations explicitly taking into account the observational biases of both instruments. Our results support the so-called ``blazar sequence'' which was originally based on radio samples of blazars and radio luminosities. We also argue that the X-ray-to-gamma-ray continua of blazars may provide independent insights into the physical conditions around the jet, complementing/superseding the ambiguities of the traditional classification based on optical properties.

20 citations