scispace - formally typeset
Search or ask a question

Showing papers by "László Gondán published in 2018"


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations


Journal Article
TL;DR: The sensitivity of the LIGO network to transient gravitational-wave signals is estimated, and the capability of the network to determine the sky location of the source is studied, to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and $$90\\%$$90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–$$20~\\mathrm {deg}^2$$20deg2 requires at least three detectors of sensitivity within a factor of $$\\sim 2$$∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

264 citations


Journal ArticleDOI
TL;DR: In this article, the authors determined the distribution of initial orbital parameters for a population of binary black holes on eccentric orbits, and they showed that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster.
Abstract: Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 Msun and 80 Msun, we find that between 43-69% (68-94%) of 30 Msun - 30 Msun (10 Msun - 10 Msun) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than 10% of the sources with binary component masses less than 30 Msun remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005-0.05 for the lower-mass BHs, and 0.1 - 0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasi-circular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.

125 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +980 moreInstitutions (111)
TL;DR: The systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences, and the output of the PyCBC pipeline is used as a metric for improvement.
Abstract: The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.

124 citations


Journal ArticleDOI
TL;DR: In this article, the authors determined the measurement accuracy with which the LIGO-VIRGO-KAGRA network could measure the source parameters of eccentric binary using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform, and found that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources.
Abstract: Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 –30 non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

52 citations


Journal ArticleDOI
TL;DR: In this paper, the measurement accuracy of the Fisher matrix method for a wide range of binary masses including neutron star-neutron star (NS-NS), NS-BH, and BH-Black Hole (BH)-BH binaries with BH masses up to 0.081 was determined using the LIGO/VIRGO/KAGRA detector.
Abstract: In a recent paper, we determined the measurement accuracy of physical parameters for eccentric, precessing, non-spinning, inspiraling, stellar-mass black hole - black hole (BH-BH) binaries for the upcoming second-generation LIGO/VIRGO/KAGRA detector network at design sensitivity using the Fisher matrix method. Here we extend that study to a wide range of binary masses including neutron star - neutron star (NS-NS), NS-BH, and BH-BH binaries with BH masses up to $110 \, M_{\odot}$. The measurement error of eccentricity $e_{10 \,\rm Hz}$ at a gravitational-wave (GW) frequency of $10 \, {\rm Hz}$ is in the range $(10^{-4}-10^{-3}) \times (D_L/ 100\,\rm Mpc)$ for NS-NS, NS-BH, and BH-BH binaries at a luminosity distance of $D_L$ if $e_{10 \,\rm Hz} \gtrsim 0.1 $. For events with masses and distances similar to the detected 10 GW transients, we show that nonzero orbital eccentricities may be detected if $0.081 \lesssim e_{10 \,\rm Hz}$. Consequently, the LIGO/VIRGO/KAGRA detector network at design sensitivity will have the capability to distinguish between eccentric waveforms and circular waveforms. In comparison to circular inspirals, we find that the chirp mass measurement precision can improve by up to a factor of $\sim 20$ and $\sim 50-100$ for NS-NS and NS-BH binaries with BH companion masses $\lesssim 40 \, M_{\odot}$, respectively. The identification of eccentric sources may give information on their astrophysical origin; it would indicate merging binaries in triple or higher multiplicity systems or dynamically formed binaries in dense stellar systems such as globular clusters or galactic nuclei.

12 citations


01 Feb 2018
TL;DR: In this paper, the PyCBC pipeline is used to search for gravitational wave signals from compact binary coalescences, and it is shown that the removal of noisy data from analysis time can improve the sensitivity of searches for binary coalescence.
Abstract: The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.

6 citations