scispace - formally typeset
Search or ask a question

Showing papers by "Leslie Greengard published in 2023"



Journal ArticleDOI
TL;DR: In this paper , the authors compare the behavior of the following integral equation formulations with regard to the issues noted above: the standard electric, magnetic, and combined field integral equations with standard RWG basis functions, the non-resonant charge-current integral equation, the electric charge current integral equation and the augmented regularized combined source integral equation.
Abstract: Many integral equation-based methods are available for problems of time-harmonic electromagnetic scattering from perfect electric conductors. Moreover, there are numerous ways in which the geometry can be represented, numerous ways to represent the relevant surface current and/or charge densities, numerous quadrature methods that can be deployed, and numerous fast methods that can be used to accelerate the solution of the large linear systems which arise from discretization. Among the many issues that arise in such scattering calculations are the avoidance of spurious resonances, the applicability of the chosen method to scatterers of non-trivial topology, the robustness of the method when applied to objects with multiscale features, the stability of the method under mesh refinement, the ease of implementation with high-order basis functions, and the behavior of the method as the frequency tends to zero. Since three-dimensional scattering is a challenging, large-scale problem, many of these issues have been historically difficult to investigate. It is only with the advent of fast algorithms and modern iterative methods that a careful study of these issues can be carried out effectively. In this paper, we use GMRES as our iterative solver and the fast multipole method as our acceleration scheme in order to investigate some of these questions. In particular, we compare the behavior of the following integral equation formulations with regard to the issues noted above: the standard electric, magnetic, and combined field integral equations with standard RWG basis functions, the non-resonant charge-current integral equation, the electric charge-current integral equation, the augmented regularized combined source integral equation and the decoupled potential integral equation DPIE. Various numerical results are provided to demonstrate the behavior of each of these schemes.

Journal ArticleDOI
TL;DR: In this article , a new version of the fast Gauss transform (FGT) for discrete and continuous sources is presented, making use only of the plane-wave representation of the Gaussian kernel and a new hierarchical merging scheme.
Abstract: We present a new version of the fast Gauss transform (FGT) for discrete and continuous sources. Classical Hermite expansions are avoided entirely, making use only of the plane-wave representation of the Gaussian kernel and a new hierarchical merging scheme. For continuous source distributions sampled on adaptive tensor-product grids, we exploit the separable structure of the Gaussian kernel to accelerate the computation. For discrete sources, the scheme relies on the nonuniform fast Fourier transform (NUFFT) to construct near field plane wave representations. The scheme has been implemented for either free-space or periodic boundary conditions. In many regimes, the speed is comparable to or better than that of the conventional FFT in work per gridpoint, despite being fully adaptive.