scispace - formally typeset
Search or ask a question

Showing papers by "M. Tristram published in 2012"


Journal ArticleDOI
TL;DR: In this article, the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS) was presented.
Abstract: We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to $M_\ast\sim 2\times 10^{11} \Msolar$, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to $M_{500}\sim 2\times 10^{13} \Msolar$, and there is a clear indication of signal down to $M_{500}\sim 4\times 10^{12} \Msolar$. Planck's SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects in the X-ray sample.

166 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify and characterize the emission from the Galactic "haze" at microwave wavelengths, which is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude.
Abstract: Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining the Planck data with observations from the WMAP we are able to determine the spectrum of this emission to high accuracy, unhindered by the large systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the microwave haze morphology is consistent with that of the Fermi gamma-ray "haze" or "bubbles," indicating that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new mechanism for cosmic-ray acceleration in the centre of our Galaxy is implied.

133 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Planck Early Catalogue (ERCSC) at 100 to 857 GHz to estimate the number of synchrotron and dust-dominated sources.
Abstract: (abridged for arXiv) We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources -- infrared and radio sources -- from the Planck Early Catalogue (ERCSC) at 100 to 857GHz. Our sample contains, after the 80% completeness cut, between 122 and 452 and sources, with flux densities above 0.3 and 1.9Jy at 100 and 857GHz, over about 31 to 40% of the sky. Using Planck HFI, all the sources have been classified as either dust-dominated or synchrotron-dominated on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353GHz; at 353GHz or higher (or 217GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (earlier Planck, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies. We derive the multi-frequency Euclidean level and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857GHz.

64 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown  +208 moreInstitutions (54)
TL;DR: In this article, the authors present an analysis of Planck satellite data on the Coma Cluster observed via the Sunyaev-Zeldovich effect, and they find that the Arnaud et al. universal pressure profile does not fit Coma, and that their pressure profile for merging systems provides a good fit of the data only at r R_500 than the mean pressure profile predicted by the simulations.
Abstract: We present an analysis of Planck satellite data on the Coma Cluster observed via the Sunyaev-Zeldovich effect. Planck is able, for the first time, to detect SZ emission up to r ~ 3 X R_500. We test previously proposed models for the pressure distribution in clusters against the azimuthally averaged data. We find that the Arnaud et al. universal pressure profile does not fit Coma, and that their pressure profile for merging systems provides a good fit of the data only at r R_500 than the mean pressure profile predicted by the simulations. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Planck y profiles extracted from corresponding sectors we find pressure jumps of 4.5+0.4-0.2 and 5.0+1.3-0.1 in the west and southeast, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number M_w=2.03+0.09-0.04 and M_se=2.05+0.25-0.02 in the West and Southeast, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.

13 citations